Welcome!

@DXWorldExpo Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Zakia Bouachraoui, Carmen Gonzalez

Related Topics: @DXWorldExpo, Java IoT, @CloudExpo

@DXWorldExpo: Article

Getting Automation Right with Big Data | @BigDataExpo #BigData

Things To Remember While Automating With Big Data

Big data automation can mean writing dozens of scripts to process different input sources and aligning them in order to consolidate all this data and produce the required output.

Why exactly do you need big data for your enterprise projects? Many industry observers have been noting that although a lot of enterprises like to claim that their big data projects are aimed at "deriving insights" that replace human intuition with data-driven alternatives, in reality though, the objective appears to be automation. They point out that the role of data scientists at a lot of organizations has got little to do with replacing human intuition with big data. Instead, it is about augmenting human experience by making it easier, faster and more efficient.

But automating big data processing is easier said than done and the biggest problem here is that big data is well big. What this means is that there is a lot of chaos and inconsistency in the data available. As a result, creating a MapReduce script that can instantly input all your data and process the results is just wishful thinking. In reality, big data automation can mean writing dozens of scripts to process different input sources and aligning them in order to consolidate all this data and produce the required output.

The first thing to get right with respect to automating big data is the architecture. One of the most popular ways to set up big data automation is through data lakes. To put it simple, data lakes is a large storage repository that holds all the raw data until it is necessary for processing. Unlike traditional hierarchical data warehouses, data lakes stores raw data in a flat architecture . One of the key advantages here is that data lakes can store all sorts of data - structured, semi-structured and unstructured and is thus ably suited for big data automation.

The next thing to get right is agility. Traditional data sources are structured and using a data warehouse technology ensures seamless processing and efficient processing of data. With big data though, this can be a disadvantage. Data scientists need to build agile systems that can be easily configured and reworked in order to quickly and efficiently navigate through the multitude of data sources and build an automation system that works.

While challenges as those mentioned above can be tackled by choosing the right technologies, there are other problems with big data that need to be dealt at a more granular level. One example is manipulative algorithms that can bring about vastly different outputs and rogue or incompetent developers can cause automation issues that can be extremely difficult to track down and modify. Another issue is with misinterpretation of data. An automated big data system could possibly magnify minor discrepancies in data and feed them into a loop that could lead to grossly misleading outputs.

These are issues that cannot be wished away and the only way to get automation right in such cases is by diligently monitoring and evaluating the code and outputs. This way, it is possible to identify discrepancies in the algorithm and outputs before it can potentially blow up. From a business perspective, this means additional resources to test and validate the code and output at each stage of the development and operational cycle. This could effectively bring down the cost advantage that big automation has. But this is a necessary expense to pay if businesses need to establish a sustainable big automation product that also works.

More Stories By Harry Trott

Harry Trott is an IT consultant from Perth, WA. He is currently working on a long term project in Bangalore, India. Harry has over 7 years of work experience on cloud and networking based projects. He is also working on a SaaS based startup which is currently in stealth mode.

DXWorldEXPO Digital Transformation Stories
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Cloud is the motor for innovation and digital transformation. CIOs will run 25% of total application workloads in the cloud by the end of 2018, based on recent Morgan Stanley report. Having the right enterprise cloud strategy in place, often in a multi cloud environment, also helps companies become a more intelligent business. Companies that master this path have something in common: they create a culture of continuous innovation. In his presentation, Dilipkumar will outline the latest resear...
Everyone wants the rainbow - reduced IT costs, scalability, continuity, flexibility, manageability, and innovation. But in order to get to that collaboration rainbow, you need the cloud! In this presentation, we'll cover three areas: First - the rainbow of benefits from cloud collaboration. There are many different reasons why more and more companies and institutions are moving to the cloud. Benefits include: cost savings (reducing on-prem infrastructure, reducing data center foot print, redu...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
When building large, cloud-based applications that operate at a high scale, it’s important to maintain a high availability and resilience to failures. In order to do that, you must be tolerant of failures, even in light of failures in other areas of your application. “Fly two mistakes high” is an old adage in the radio control airplane hobby. It means, fly high enough so that if you make a mistake, you can continue flying with room to still make mistakes. In his session at 18th Cloud Expo, Lee A...