Welcome!

@DXWorldExpo Authors: Liz McMillan, Elizabeth White, Zakia Bouachraoui, Pat Romanski, Maria C. Horton

Related Topics: @DXWorldExpo, Java IoT, @CloudExpo

@DXWorldExpo: Article

Getting Automation Right with Big Data | @BigDataExpo #BigData

Things To Remember While Automating With Big Data

Big data automation can mean writing dozens of scripts to process different input sources and aligning them in order to consolidate all this data and produce the required output.

Why exactly do you need big data for your enterprise projects? Many industry observers have been noting that although a lot of enterprises like to claim that their big data projects are aimed at "deriving insights" that replace human intuition with data-driven alternatives, in reality though, the objective appears to be automation. They point out that the role of data scientists at a lot of organizations has got little to do with replacing human intuition with big data. Instead, it is about augmenting human experience by making it easier, faster and more efficient.

But automating big data processing is easier said than done and the biggest problem here is that big data is well big. What this means is that there is a lot of chaos and inconsistency in the data available. As a result, creating a MapReduce script that can instantly input all your data and process the results is just wishful thinking. In reality, big data automation can mean writing dozens of scripts to process different input sources and aligning them in order to consolidate all this data and produce the required output.

The first thing to get right with respect to automating big data is the architecture. One of the most popular ways to set up big data automation is through data lakes. To put it simple, data lakes is a large storage repository that holds all the raw data until it is necessary for processing. Unlike traditional hierarchical data warehouses, data lakes stores raw data in a flat architecture . One of the key advantages here is that data lakes can store all sorts of data - structured, semi-structured and unstructured and is thus ably suited for big data automation.

The next thing to get right is agility. Traditional data sources are structured and using a data warehouse technology ensures seamless processing and efficient processing of data. With big data though, this can be a disadvantage. Data scientists need to build agile systems that can be easily configured and reworked in order to quickly and efficiently navigate through the multitude of data sources and build an automation system that works.

While challenges as those mentioned above can be tackled by choosing the right technologies, there are other problems with big data that need to be dealt at a more granular level. One example is manipulative algorithms that can bring about vastly different outputs and rogue or incompetent developers can cause automation issues that can be extremely difficult to track down and modify. Another issue is with misinterpretation of data. An automated big data system could possibly magnify minor discrepancies in data and feed them into a loop that could lead to grossly misleading outputs.

These are issues that cannot be wished away and the only way to get automation right in such cases is by diligently monitoring and evaluating the code and outputs. This way, it is possible to identify discrepancies in the algorithm and outputs before it can potentially blow up. From a business perspective, this means additional resources to test and validate the code and output at each stage of the development and operational cycle. This could effectively bring down the cost advantage that big automation has. But this is a necessary expense to pay if businesses need to establish a sustainable big automation product that also works.

More Stories By Harry Trott

Harry Trott is an IT consultant from Perth, WA. He is currently working on a long term project in Bangalore, India. Harry has over 7 years of work experience on cloud and networking based projects. He is also working on a SaaS based startup which is currently in stealth mode.

DXWorldEXPO Digital Transformation Stories
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
"Cloud computing is certainly changing how people consume storage, how they use it, and what they use it for. It's also making people rethink how they architect their environment," stated Brad Winett, Senior Technologist for DDN Storage, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
"We were founded in 2003 and the way we were founded was about good backup and good disaster recovery for our clients, and for the last 20 years we've been pretty consistent with that," noted Marc Malafronte, Territory Manager at StorageCraft, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...