@DXWorldExpo Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Elizabeth White, Zakia Bouachraoui

Related Topics: @DXWorldExpo, @CloudExpo, Apache

@DXWorldExpo: Article

The 'Big' Fallacy of Big Data | @BigDataExpo #BigData

Why companies are luring you into the Big Data Trap

Unless you've been living under a rock for the past couple of years, you've been hearing about the world of Big Data nonstop. Big Data promises fortune and power to those that can wield the somewhat mystical and often nebulous power of "Big Data". Unfortunately for the rest of us mere mortals Big Data is built on an out-right lie that is both pernicious and unfortunate. It's hiding right there in plain sight in the name itself. The word, BIG.

The Fallacy of Big Data is that you have to have a lot of data for it to be relevant. The common catch phrase is: "More data = more insights". There is a nugget of truth to this in that, in some cases, a lot of data is needed in order to establish valid patterns and create real insight into the activity the data represents. More often than not however, this creates a significant challenge to those responsible for performing analytics which is sifting through a mountain of data to find the parts that actually matter. Recent studies have shown that fully 80% of data analysis is spent just tinkering with the data to get it into a usable format. So we see that more data creates a massive data curation issue, and leaves us with more work to do to even start experimenting, much less monetizing our data.

The reality of "Big Data" is that it was invented by those with no skin in the game. Analytics, open source, digital transformation, and Cloud are all of the technologies that enable comprehensive data analysis. With minimal infrastructure, commodity hardware, and free or nearly free software to store, analyze, and more importantly drive value from that data, the big infrastructure players are left out in the cold with nothing to offer. Enter "Big Data", because if you are going to try and manage petabytes of data you need good storage, and 10's of thousands of servers is awful to manage. So the Fallacy is born:

"In order to get real results from data, you cannot rely on just a little bit of it, or just the relevant data, you need every set of data imaginable. Therefore, (and here's where things get squidgy) you need to bring all that data in house (because the cloud is too expensive to store it) and you need a lot of manageable and flexible enterprise-grade gear to do it with (because free stuff is not enterprise ready)."

You can see how this is built around some nuggets of truth. I was asked recently, "how would you move a petabyte of data to Amazon cloud storage?" and I answered as truthfully as I could, "Very Slowly". Cloud does get expensive when used for a lot of infrastructure, but when used as a part of the overall solution it is an important tool. Also the thought of managing a massive Hadoop cluster of 1000 "exactly the same" servers sounds like the hell of IT in the pre-VM days, but it is also not really an accurate picture of the Hadoop landscape. The vast majority of analytics clusters top out around 50 servers and that's far more manageable (and less expensive) than huge enterprise gear. To be fair, there are organizations out there where a massive-scale, enterprise platformed approach will make sense, but the unfortunate side effect of this approach by legacy vendors is that they have made the solution itself the barrier to entry.

The problem is that now "Big Data" has made it into the vernacular and worse yet, has become synonymous with Data Analytics. Every company, organization, or even individual on earth can benefit from analyzing their relevant data for new insights. Take a very simple example; look at your budget to identify where you overspend (too many meals out for example). That is personal analytics, it does not require complex anything, and there are numerous ways to do it with free or nearly free tools. Now scale that up to the bank that wants to offer new digital, data-driven products to customers. They already have a lot of that data in house, and they already have a lot of analytical tools. Why would they need, per-se, to include every data set under the sun? They may want some more sets of data (social media to identify trends that might lead to investment opportunity), but they don't HAVE to have it stored in house to use it - it is all offered free-to-use via serialized API's. In the unique case where if they did decide to store it all in house, we are not talking about 10's of PB of data. More like adding a few 10's to 100's of TB for the data in question, because again - you don't download all of Twitter, just the stuff that is relevant to you. Also analytic data is largely transient data, meaning that it is used for the analysis and then discarded (especially true in the real-time world), so where is the need for massive infrastructure to support that initiative?

I have spoken a lot about "Big Data" and the Fallacy and trap of paying too much attention to the word BIG. Data is important to everyone and it can have value for anyone. In my most recent speaking sessions I have shown how you can do a simple social analysis for free in a matter of minutes. You don't need a massive infrastructure to make that production ready either. It just takes some willingness to see through the noise to the actual value of what the "Big Data" message is trying to say. Analytics is important and valuable for everyone. You don't have to be a Fortune 100 company to create value from the data you already have, and to bring in new data for analytics. Everyone can do it.

For more thought provoking content on Big Data and Data Analytics, click here.

Connect with  me on Twitter or LinkedIn and share your thoughts!

More Stories By Christopher Harrold

As an Agent of IT Transformation, I have over 20 years experience in the field. Started off as the IT Ops guy and followed the trends of the DevOps movement wherever I went. I want to shake up accepted ways of thinking and develop new models and designs that push the boundaries of technology and of the accepted status quo. There is no greater reward for me than seeing something that was once dismissed as "impossible" become the new normal, and I have been richly rewarded throughout my career with this result. In my last role as CTO at EMC Corporation, I was working tirelessly with a small group of engineers and product managers to build a market leading, innovative platform for data analytics. Combining best of breed storage, analytics and visualization solutions that enables the Data as a Service model for enterprise and mid sized companies globally.

DXWorldEXPO Digital Transformation Stories
Today, we have more data to manage than ever. We also have better algorithms that help us access our data faster. Cloud is the driving force behind many of the data warehouse advancements we have enjoyed in recent years. But what are the best practices for storing data in the cloud for machine learning and data science applications?
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term.
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science" is responsible for guiding the technology strategy within Hitachi Vantara for IoT and Analytics. Bill brings a balanced business-technology approach that focuses on business outcomes to drive data, analytics and technology decisions that underpin an organization's digital transformation strategy.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
For years the world's most security-focused and distributed organizations - banks, military/defense agencies, global enterprises - have sought to adopt cloud technologies that can reduce costs, future-proof against data growth, and improve user productivity. The challenges of cloud transformation for these kinds of secure organizations have centered around data security, migration from legacy systems, and performance. In our presentation, we will discuss the notion that cloud computing, properl...
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.