Welcome!

@DXWorldExpo Authors: Liz McMillan, Elizabeth White, Zakia Bouachraoui, Maria C. Horton, Kevin Benedict

Related Topics: @DXWorldExpo, @CloudExpo, Apache

@DXWorldExpo: Article

Analytics in Decision-Making Workflow | @CloudExpo #BigData #Microservices

Big Data shouldn’t be restricted to data scientists

Putting Analytics into the Decision-Making Workflow with Apache Spark

Data-driven businesses use analytics to inform and support their decisions. In many companies, marketing, sales, finance, and operations departments tend to be the earliest adopters of data analytics, with the rest of the business lagging behind. The goal for many organizations now is to make analytics a natural part of most-if not every-employee's daily workflow. Achieving that objective typically requires a shift in the corporate culture, and ready access to user-friendly data analytics tools.

Big Data Shouldn't Be Restricted to Data Scientists
Big Data experts, when discussing the process of integrating data analysis into the workflow across an enterprise, often talk blithely about how users can easily leverage their SQL skills to query data. The problem is that not everyone has SQL skills-or even knows what SQL is.

Companies who plan to transform themselves into data-driven, lean businesses may want to consider the fact that every employee really doesn't need to be a data scientist. Focus the majority of training efforts (including how to run basic SQL queries, if necessary) on the employees whose jobs involve fact-based decision-making.

Making employees wait for IT to manage schemas and setup ETL tasks is counter-productive. In a busy company, by the time data is prepped for analysis, it may have lost some of its actionable relevance. Instead, provide robust self-service data analysis tools, such as Apache Drill, to enable users to extract the most value possible from data stored in Hadoop. This frees employees to work with data in native formats-schema-less data, nested data, and data with rapidly-evolving schemas-with limited to no IT involvement.

Self-service data tools also enable explorative queries. Users can explore the data directly and extend their analysis effortlessly, with no need to wait for IT to prep additional data sets. Analysis can then extend past known, structured data, to semi-structured and unstructured data, such as call center logs, videos, spreadsheets, social media data, clickstream data, web log files, and external data (such as publicly available industry data)-allowing a business to gain big picture, actionable insights on the fly.

Apache Spark: Bringing New Efficiencies to Big Data Analysis
Agile companies that rely on data analysis performed in near-time and real-time also need solutions that can rapidly process large data sets. Apache Spark, an in-memory data processing framework, is increasingly the solution of choice.

Spark is a framework providing parallel, distributed data processing. Spark can be deployed through Apache Hadoop via Yarn, Apache Mesos, or its own standalone cluster manager. It can serve as a foundation for other data processing frameworks, and supports programming languages including Scala, Java, and Python. Data can be accessed in HDFS, Cassandra, HBase, Hive, Tachyon, and any Hadoop data source.

Data sets can be pinned in memory with Spark, which boosts application performance noticeably. Spark also provides speed improvements for applications running on disk and enables MapReduce to support interactive queries and stream processing far more efficiently.

And Spark eliminates the need for separate, distributed systems to process, for example, batch applications, interactive queries, iterative algorithms, and/or streaming. With Spark, all of these processing types are supported by the same engine, reducing management chores and making the processes easier to combine.

Businesses can count on Spark's benefits over the long-term. Spark, initially conceived as a project at UC Berkeley in California, moved to the Apache Software Foundation in 2013 and became a top level project in 2014. Apache top level projects, which include Hadoop, Spark, and httpd, is a designation that indicates a project has strong community backing from developers and users-and has proved its worth. More than 50 companies currently list themselves on Spark's "Powered By" page.

Putting Data-Driven Intelligence to Work
Big Data incarnates multiple processes-collection, cleansing, integration, management, governance, security, analysis, and decision-making-all of which need to be in place before a company can consider itself data-driven. Oddly, the decision-making process itself tends to get the least attention.

Gaining real ROI from a Big Data project requires more than fast tools and a solid plan to enable users to incorporate analysis-driven decision-making into their workflow. Quick discovery of exciting new insights in data has no benefit if a company doesn't have a process that enables an equally speedy and effective response to that new intelligence. When devising (or revising) your Big Data project, ensure that you build in an implementation process that enables analysis to be transformed into action.

And finally, a word of warning about real-time analysis: It's easy to lose sight of long-range goals when you're immersed in the moment. Ensure that business goals are aligned with data analysis activities, and establish KPIs to monitor the success of data-driven initiatives. Big Data should provide a company with a sustainable competitive edge.

To explore more of what Spark has to offer, jump over to Getting Started with Apache Spark: From Inception to Production, a free interactive ebook by James A. Scott.

More Stories By Jim Scott

Jim has held positions running Operations, Engineering, Architecture and QA teams in the Consumer Packaged Goods, Digital Advertising, Digital Mapping, Chemical and Pharmaceutical industries. Jim has built systems that handle more than 50 billion transactions per day and his work with high-throughput computing at Dow Chemical was a precursor to more standardized big data concepts like Hadoop.

DXWorldEXPO Digital Transformation Stories
"We were founded in 2003 and the way we were founded was about good backup and good disaster recovery for our clients, and for the last 20 years we've been pretty consistent with that," noted Marc Malafronte, Territory Manager at StorageCraft, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
While the focus and objectives of IoT initiatives are many and diverse, they all share a few common attributes, and one of those is the network. Commonly, that network includes the Internet, over which there isn't any real control for performance and availability. Or is there? The current state of the art for Big Data analytics, as applied to network telemetry, offers new opportunities for improving and assuring operational integrity. In his session at @ThingsExpo, Jim Frey, Vice President of S...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
"Cloud computing is certainly changing how people consume storage, how they use it, and what they use it for. It's also making people rethink how they architect their environment," stated Brad Winett, Senior Technologist for DDN Storage, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...