Welcome!

@BigDataExpo Authors: Kalyan Ramanathan, Pat Romanski, Elizabeth White, Liz McMillan, Doron Kolton

Blog Feed Post

Why Contextual Data Locality Matters

Big Data is quickly overtaking SDN as a key phrase in today’s networking lingo. And overused already as it may be, it actually has a lot more meaning and definition compared to SDN. Big Data solutions are designed to work on lots of data as the name suggests. Of course they have been around forever, talk to any large bank, credit card company, airline or logistics company and all of them have had applications running on extremely large databases and data sets forever. But this is the new Big Data, the one inspired by Hadoop, MapReduce and friends. High performance compute clusters specifically created to analyze large amounts of data and reduce it to a form and quantity that human brains can use in decision making.

What makes today’s Big Data solutions different than its more traditional large database based applications, beyond the sheer datasets being analyzed, is the distributed nature of the analysis. Big Data solutions are designed to run across 100s or even 1000s of servers, each with multiple CPU cores to chew on the data. Traditional large database applications tend to be more localized with fewer applications and servers accessing the data, allowing for more tightly custom integrated solutions, the likes of which Oracle and friends are experts at.

Big Data Flashback

In the late 80s I started my career working as a network engineer for a high energy physics research institute. Working closely with the folks at CERN in Geneva, these physicists were (at the time, and probably still) masters of creating very large datasets. Every time an experiment was run, Tbytes of data (probably Pbytes by now) were generated by thousands of sensors along the tunnel or ring particles were passed through to collide.

The Big Data solution at the time was primitive, but not all that much different than today. The large datasets were manually broken into manageable pieces, something that would fit on a tape or disk. These datasets were then hand copied onto a compute server or super computer and the analysis application would churn through it to find specific data, correlate events and simply reduce the data to something smaller and meaningful. This would then create a new dataset, which would be combined, chopped up again, and the process repeated itself until they arrived at data that was consumable for humans to create new theories from, or provide a piece of proof of an existing theory.

During that first job, the IT group spend an enormous amount of time moving data around. A lot of it manual: tapes and disks were constantly being copied onto the appropriate compute server. The data had to be local to have any chance of analyzing the data. Between tapes, local disks and the network, the local disks were the only storage with appropriate speed to have a hope of finalizing the data reductions. And even then it would not be unusual to have a rather powerful (for the time) Apollo workstation run for several weeks on a single data set.

Back to the here and now

Forward the clock to now. The above description is really not that different from how Hadoop MapReduce works. Start with a big data set, chop it into pieces, replicate the data, compute on the data close to physical locality of the data. Then send results to Reducers, combine the results, then perhaps repeat again to get to human interpretable results.

As fast as we believe the network is within 10GbE access ports, it is still commonly the most restrictive component in the compute, distributed storage and network trio. Compute power increments have far outpaced network speed increments and even memory speed increments. We have many more cycles available to compute, but have not been able to get the data into these CPUs with the same increments. As a result, storage solutions are becoming increasingly distributed, closer to the compute power that needs it.

It’s a natural thought to have the data close to where it needs to be processed, close enough that the effort of retrieving it does not impact the overall completion of the task that uses that data. If I am writing a research paper that takes several hours to complete, I do not mind having to wait a second here or there for the right web sites to load. I would mind if I had to get into my car and drive to the library to look something up, drive back home to work on my paper, and keep doing that. The relationship between time and effort to get data has to become negligible compared to the time and effort required to complete the task.

Locality and growth

This type of contextual locality is extremely hard to manage in a dynamic and growing environment. How do you make sure that the right data remains contextually close to where it is needed when servers and VMs may not be physically close? They may not be in the same rack for the same application or customer, they may not even be in the same pod or datacenter. Storage is relatively cheap, but replication for closeness can very quickly lead to a data distribution complexity that is unmanageable in environments where its not a single orchestrated big data solution.

To solve this problem you need help from your network. You need to be able to create locality on the fly. Things that are not physically close need to be made virtually close, but with the characteristics of physical locality. And in network terms these are of course measured in the usual staples of latency and bandwidth. This is when you want to articulate relationships between the data and the applications that need that data and create virtual closeness that resembles the physical. This may mean dedicated paths through multiple switches to avoid congestion that will dramatically impact latency. These same paths can provide direct physical connectivity through dynamically engineered optical paths between application and storage, or simply appropriate prioritization of traffic along these paths. Without having to worry explicitly where the application is or where the storage is.

Physics will always stand in the way of what we really want or need, but that does not mean we use that same physics with a bit of math to create solutions that manage the complexity of creating dynamic locality. Locality is important. More pronounced in Big Data solutions, but even at a smaller scale it is important within the context of the compute effort on that data.

[Today's fun fact: Lake Superior is the world's largest lake. With that kind of naming accuracy we would like to hire the person that named the lake as our VP of Naming and Terminology]

The post Why Contextual Data Locality Matters appeared first on Plexxi.

Read the original blog entry...

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@BigDataExpo Stories
Predictive analytics tools monitor, report, and troubleshoot in order to make proactive decisions about the health, performance, and utilization of storage. Most enterprises combine cloud and on-premise storage, resulting in blended environments of physical, virtual, cloud, and other platforms, which justifies more sophisticated storage analytics. In his session at 18th Cloud Expo, Peter McCallum, Vice President of Datacenter Solutions at FalconStor, discussed using predictive analytics to mon...
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Onalytica. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...
All clouds are not equal. To succeed in a DevOps context, organizations should plan to develop/deploy apps across a choice of on-premise and public clouds simultaneously depending on the business needs. This is where the concept of the Lean Cloud comes in - resting on the idea that you often need to relocate your app modules over their life cycles for both innovation and operational efficiency in the cloud. In his session at @DevOpsSummit at19th Cloud Expo, Valentin (Val) Bercovici, CTO of Soli...
"IoT is going to be a huge industry with a lot of value for end users, for industries, for consumers, for manufacturers. How can we use cloud to effectively manage IoT applications," stated Ian Khan, Innovation & Marketing Manager at Solgeniakhela, in this SYS-CON.tv interview at @ThingsExpo, held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Join Impiger for their featured webinar: ‘Cloud Computing: A Roadmap to Modern Software Delivery’ on November 10, 2016, at 12:00 pm CST. Very few companies have not experienced some impact to their IT delivery due to the evolution of cloud computing. This webinar is not about deciding whether you should entertain moving some or all of your IT to the cloud, but rather, a detailed look under the hood to help IT professionals understand how cloud adoption has evolved and what trends will impact th...
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
Internet of @ThingsExpo, taking place June 6-8, 2017 at the Javits Center in New York City, New York, is co-located with the 20th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. @ThingsExpo New York Call for Papers is now open.
What happens when the different parts of a vehicle become smarter than the vehicle itself? As we move toward the era of smart everything, hundreds of entities in a vehicle that communicate with each other, the vehicle and external systems create a need for identity orchestration so that all entities work as a conglomerate. Much like an orchestra without a conductor, without the ability to secure, control, and connect the link between a vehicle’s head unit, devices, and systems and to manage the ...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
Major trends and emerging technologies – from virtual reality and IoT, to Big Data and algorithms – are helping organizations innovate in the digital era. However, to create real business value, IT must think beyond the ‘what’ of digital transformation to the ‘how’ to harness emerging trends, innovation and disruption. Architecture is the key that underpins and ties all these efforts together. In the digital age, it’s important to invest in architecture, extend the enterprise footprint to the cl...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
Successful digital transformation requires new organizational competencies and capabilities. Research tells us that the biggest impediment to successful transformation is human; consequently, the biggest enabler is a properly skilled and empowered workforce. In the digital age, new individual and collective competencies are required. In his session at 19th Cloud Expo, Bob Newhouse, CEO and founder of Agilitiv, drew together recent research and lessons learned from emerging and established compa...