Click here to close now.



Welcome!

@BigDataExpo Authors: Liz McMillan, Harry Trott, Scott Allen, Elizabeth White, Pat Romanski

Blog Feed Post

Why Contextual Data Locality Matters

Big Data is quickly overtaking SDN as a key phrase in today’s networking lingo. And overused already as it may be, it actually has a lot more meaning and definition compared to SDN. Big Data solutions are designed to work on lots of data as the name suggests. Of course they have been around forever, talk to any large bank, credit card company, airline or logistics company and all of them have had applications running on extremely large databases and data sets forever. But this is the new Big Data, the one inspired by Hadoop, MapReduce and friends. High performance compute clusters specifically created to analyze large amounts of data and reduce it to a form and quantity that human brains can use in decision making.

What makes today’s Big Data solutions different than its more traditional large database based applications, beyond the sheer datasets being analyzed, is the distributed nature of the analysis. Big Data solutions are designed to run across 100s or even 1000s of servers, each with multiple CPU cores to chew on the data. Traditional large database applications tend to be more localized with fewer applications and servers accessing the data, allowing for more tightly custom integrated solutions, the likes of which Oracle and friends are experts at.

Big Data Flashback

In the late 80s I started my career working as a network engineer for a high energy physics research institute. Working closely with the folks at CERN in Geneva, these physicists were (at the time, and probably still) masters of creating very large datasets. Every time an experiment was run, Tbytes of data (probably Pbytes by now) were generated by thousands of sensors along the tunnel or ring particles were passed through to collide.

The Big Data solution at the time was primitive, but not all that much different than today. The large datasets were manually broken into manageable pieces, something that would fit on a tape or disk. These datasets were then hand copied onto a compute server or super computer and the analysis application would churn through it to find specific data, correlate events and simply reduce the data to something smaller and meaningful. This would then create a new dataset, which would be combined, chopped up again, and the process repeated itself until they arrived at data that was consumable for humans to create new theories from, or provide a piece of proof of an existing theory.

During that first job, the IT group spend an enormous amount of time moving data around. A lot of it manual: tapes and disks were constantly being copied onto the appropriate compute server. The data had to be local to have any chance of analyzing the data. Between tapes, local disks and the network, the local disks were the only storage with appropriate speed to have a hope of finalizing the data reductions. And even then it would not be unusual to have a rather powerful (for the time) Apollo workstation run for several weeks on a single data set.

Back to the here and now

Forward the clock to now. The above description is really not that different from how Hadoop MapReduce works. Start with a big data set, chop it into pieces, replicate the data, compute on the data close to physical locality of the data. Then send results to Reducers, combine the results, then perhaps repeat again to get to human interpretable results.

As fast as we believe the network is within 10GbE access ports, it is still commonly the most restrictive component in the compute, distributed storage and network trio. Compute power increments have far outpaced network speed increments and even memory speed increments. We have many more cycles available to compute, but have not been able to get the data into these CPUs with the same increments. As a result, storage solutions are becoming increasingly distributed, closer to the compute power that needs it.

It’s a natural thought to have the data close to where it needs to be processed, close enough that the effort of retrieving it does not impact the overall completion of the task that uses that data. If I am writing a research paper that takes several hours to complete, I do not mind having to wait a second here or there for the right web sites to load. I would mind if I had to get into my car and drive to the library to look something up, drive back home to work on my paper, and keep doing that. The relationship between time and effort to get data has to become negligible compared to the time and effort required to complete the task.

Locality and growth

This type of contextual locality is extremely hard to manage in a dynamic and growing environment. How do you make sure that the right data remains contextually close to where it is needed when servers and VMs may not be physically close? They may not be in the same rack for the same application or customer, they may not even be in the same pod or datacenter. Storage is relatively cheap, but replication for closeness can very quickly lead to a data distribution complexity that is unmanageable in environments where its not a single orchestrated big data solution.

To solve this problem you need help from your network. You need to be able to create locality on the fly. Things that are not physically close need to be made virtually close, but with the characteristics of physical locality. And in network terms these are of course measured in the usual staples of latency and bandwidth. This is when you want to articulate relationships between the data and the applications that need that data and create virtual closeness that resembles the physical. This may mean dedicated paths through multiple switches to avoid congestion that will dramatically impact latency. These same paths can provide direct physical connectivity through dynamically engineered optical paths between application and storage, or simply appropriate prioritization of traffic along these paths. Without having to worry explicitly where the application is or where the storage is.

Physics will always stand in the way of what we really want or need, but that does not mean we use that same physics with a bit of math to create solutions that manage the complexity of creating dynamic locality. Locality is important. More pronounced in Big Data solutions, but even at a smaller scale it is important within the context of the compute effort on that data.

[Today's fun fact: Lake Superior is the world's largest lake. With that kind of naming accuracy we would like to hire the person that named the lake as our VP of Naming and Terminology]

The post Why Contextual Data Locality Matters appeared first on Plexxi.

Read the original blog entry...

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@BigDataExpo Stories
The initial debate is over: Any enterprise with a serious commitment to IT is migrating to the cloud. But things are not so simple. There is a complex mix of on-premises, colocated, and public-cloud deployments. In this power panel at 18th Cloud Expo, moderated by Conference Chair Roger Strukhoff, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships at Commvault; Dave Landa, Chief Operating Officer at kintone; William Morrish, General Manager Product Sales at Interou...
What does it look like when you have access to cloud infrastructure and platform under the same roof? Let’s talk about the different layers of Technology as a Service: who cares, what runs where, and how does it all fit together. In his session at 18th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, an IBM company, spoke about the picture being painted by IBM Cloud and how the tools being crafted can help fill the gaps in your IT infrastructure.
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to imp...
Amazon has gradually rolled out parts of its IoT offerings, but these are just the tip of the iceberg. In addition to optimizing their backend AWS offerings, Amazon is laying the ground work to be a major force in IoT - especially in the connected home and office. In his session at @ThingsExpo, Chris Kocher, founder and managing director of Grey Heron, explained how Amazon is extending its reach to become a major force in IoT by building on its dominant cloud IoT platform, its Dash Button strat...
Digital Initiatives create new ways of conducting business, which drive the need for increasingly advanced security and regulatory compliance challenges with exponentially more damaging consequences. In the BMC and Forbes Insights Survey in 2016, 97% of executives said they expect a rise in data breach attempts in the next 12 months. Sixty percent said operations and security teams have only a general understanding of each other’s requirements, resulting in a “SecOps gap” leaving organizations u...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his Day 2 Keynote at @ThingsExpo, Henrik Kenani Dahlgren, Portfolio Marketing Manager at Ericsson, discussed how to plan to cooperate, partner, and form lasting all-star teams to change t...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
19th Cloud Expo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterpri...
It's easy to assume that your app will run on a fast and reliable network. The reality for your app's users, though, is often a slow, unreliable network with spotty coverage. What happens when the network doesn't work, or when the device is in airplane mode? You get unhappy, frustrated users. An offline-first app is an app that works, without error, when there is no network connection. In his session at 18th Cloud Expo, Bradley Holt, a Developer Advocate with IBM Cloud Data Services, discussed...
SYS-CON Events announced today that Bsquare has been named “Silver Sponsor” of SYS-CON's @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. For more than two decades, Bsquare has helped its customers extract business value from a broad array of physical assets by making them intelligent, connecting them, and using the data they generate to optimize business processes.
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Bradley Holt, Developer Advocate a...
The pace of innovation, vendor lock-in, production sustainability, cost-effectiveness, and managing risk… In his session at 18th Cloud Expo, Dan Choquette, Founder of RackN, discussed how CIOs are challenged finding the balance of finding the right tools, technology and operational model that serves the business the best. He also discussed how clouds, open source software and infrastructure solutions have benefits but also drawbacks and how workload and operational portability between vendors ...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 19th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - comp...
There is little doubt that Big Data solutions will have an increasing role in the Enterprise IT mainstream over time. Big Data at Cloud Expo - to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA - has announced its Call for Papers is open. Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future - it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
"A lot of times people will come to us and have a very diverse set of requirements or very customized need and we'll help them to implement it in a fashion that you can't just buy off of the shelf," explained Nick Rose, CTO of Enzu, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Cognitive Computing is becoming the foundation for a new generation of solutions that have the potential to transform business. Unlike traditional approaches to building solutions, a cognitive computing approach allows the data to help determine the way applications are designed. This contrasts with conventional software development that begins with defining logic based on the current way a business operates. In her session at 18th Cloud Expo, Judith S. Hurwitz, President and CEO of Hurwitz & ...