Welcome!

@BigDataExpo Authors: Elizabeth White, Pat Romanski, Liz McMillan, Lori MacVittie, Ram Sonagara

Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, IoT User Interface, @BigDataExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 2

Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

Bandwidth
We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion
Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@BigDataExpo Stories
Many private cloud projects were built to deliver self-service access to development and test resources. While those clouds delivered faster access to resources, they lacked visibility, control and security needed for production deployments. In their session at 18th Cloud Expo, Steve Anderson, Product Manager at BMC Software, and Rick Lefort, Principal Technical Marketing Consultant at BMC Software, discussed how a cloud designed for production operations not only helps accelerate developer in...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
Aspose.Total for .NET is the most complete package of all file format APIs for .NET as offered by Aspose. It empowers developers to create, edit, render, print and convert between a wide range of popular document formats within any .NET, C#, ASP.NET and VB.NET applications. Aspose compiles all .NET APIs on a daily basis to ensure that it contains the most up to date versions of each of Aspose .NET APIs. If a new .NET API or a new version of existing APIs is released during the subscription peri...
The competitive landscape of the global cloud computing market in the healthcare industry is crowded due to the presence of a large number of players. The large number of participants has led to the fragmented nature of the market. Some of the major players operating in the global cloud computing market in the healthcare industry are Cisco Systems Inc., Carestream Health Inc., Carecloud Corp., AGFA Healthcare, IBM Corp., Cleardata Networks, Merge Healthcare Inc., Microsoft Corp., Intel Corp., an...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, discussed the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filterin...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, provided tips on how to be successful in large scale machine learning...
Early adopters of IoT viewed it mainly as a different term for machine-to-machine connectivity or M2M. This is understandable since a prerequisite for any IoT solution is the ability to collect and aggregate device data, which is most often presented in a dashboard. The problem is that viewing data in a dashboard requires a human to interpret the results and take manual action, which doesn’t scale to the needs of IoT.
Cloud analytics is dramatically altering business intelligence. Some businesses will capitalize on these promising new technologies and gain key insights that’ll help them gain competitive advantage. And others won’t. Whether you’re a business leader, an IT manager, or an analyst, we want to help you and the people you need to influence with a free copy of “Cloud Analytics for Dummies,” the essential guide to this explosive new space for business intelligence.
What does it look like when you have access to cloud infrastructure and platform under the same roof? Let’s talk about the different layers of Technology as a Service: who cares, what runs where, and how does it all fit together. In his session at 18th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, an IBM company, spoke about the picture being painted by IBM Cloud and how the tools being crafted can help fill the gaps in your IT infrastructure.
"C2M is our digital transformation and IoT platform. We've had C2M on the market for almost three years now and it has a comprehensive set of functionalities that it brings to the market," explained Mahesh Ramu, Vice President, IoT Strategy and Operations at Plasma, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Traditional IT, great for stable systems of record, is struggling to cope with newer, agile systems of engagement requirements coming straight from the business. In his session at 18th Cloud Expo, William Morrish, General Manager of Product Sales at Interoute, outlined ways of exploiting new architectures to enable both systems and building them to support your existing platforms, with an eye for the future. Technologies such as Docker and the hyper-convergence of computing, networking and sto...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addres...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.