Welcome!

Big Data Journal Authors: Liz McMillan, Kevin Benedict, Pat Romanski, Michael Bushong, Elizabeth White

Related Topics: SOA & WOA, Java, Linux, Virtualization, AJAX & REA, Big Data Journal

SOA & WOA: Article

Understanding Application Performance on the Network | Part 2

Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

Bandwidth
We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion
Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Latest Stories from Big Data Journal
Cisco on Wedesday announced its intent to acquire privately held Metacloud. Based in Pasadena, Calif., Metacloud deploys and operates private clouds for global organizations with a unique OpenStack-as-a-Service model that delivers and remotely operates production-ready private clouds in a customer's data center. Metacloud's OpenStack-based cloud platform will accelerate Cisco's strategy to build the world's largest global Intercloud, a network of clouds, together with key partners to address cu...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the “Internet of Things” (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, will discuss the real...
I write and study often on the subject of digital transformation - the digital transformation of industries, markets, products, business models, etc. In brief, digital transformation is about the impact that collected and analyzed data can have when used to enhance business processes and workflows. If Amazon knows your preferences for particular books and films based upon captured data, then they can apply analytics to predict related books and films that you may like. This improves sales. T...
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is n...
When one expects instantaneous response from video generated on the internet, lots of invisible problems have to be overcome. In his session at 6th Big Data Expo®, Tom Paquin, EVP and Chief Technology Officer at OnLive, to discuss how to overcome these problems. A Silicon Valley veteran, Tom Paquin provides vision, expertise and leadership to the technology research and development effort at OnLive as EVP and Chief Technology Officer. With more than 20 years of management experience at lead...
BlueData aims to “democratize Big Data” with its launch of EPIC Enterprise, which it calls “the industry’s first Big Data software to enable enterprises to create a self-service cloud experience on premise.” This self-service private cloud allows enterprises to create 100-node Hadoop and Spark clusters in less than 10 minutes. The company is also offering a Community Edition via free download. We had a few questions for BlueData CEO Kumar Sreekanti about all this, and here's what he had to s...
Labor market analytics firm Wanted Analytics recently assessed the market for technology professionals and found that demand for people with proficient levels of Hadoop expertise had skyrocketed by around 33% since last year – it is true, Hadoop is hard technology to master and the labor market is not exactly flooded with an over-abundance of skilled practitioners. Hadoop has been called a foundational technology, rather than ‘just’ a database by some commentators – this almost pushes it towards...
The cloud provides an easy onramp to building and deploying Big Data solutions. Transitioning from initial deployment to large-scale, highly performant operations may not be as easy. In his session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, will discuss the benefits, weaknesses, and performance characteristics of public and bare metal cloud deployments that can help you make the right decisions.
Where historically app development would require developers to manage device functionality, application environment and application logic, today new platforms are emerging that are IoT focused and arm developers with cloud based connectivity and communications, development, monitoring, management and analytics tools. In her session at Internet of @ThingsExpo, Seema Jethani, Director of Product Management at Basho Technologies, will explore how to rapidly prototype using IoT cloud platforms and c...
Amazon, Google and Facebook are household names in part because of their mastery of Big Data. But what about organizations without billions of dollars to spend on Big Data tools - how can they extract value from their data? Ion Stoica is co-founder and CEO of Databricks, a company working to revolutionize Big Data analysis through the Apache Spark platform. He also serves as a professor of computer science at the University of California, Berkeley. Ion previously co-founded Conviva to commercial...