Welcome!

Big Data Journal Authors: Elizabeth White, Liz McMillan, Adrian Bridgwater, Kevin Benedict, Pat Romanski

Related Topics: IoT Expo, Java, Linux, Cloud Expo, Big Data Journal, DevOps Journal

IoT Expo: Blog Feed Post

@ThingsExpo | Cloud, Internet of Things (#IoT) and Big Operational Data

The Internet of Things is only going to make that even more challenging as businesses turn to new business models and services

Cloud and Things and Big Operational Data

Software-defined architectures are critical for achieving the right mix of efficiency and scale needed to meet the challenges that will come with the Internet of Things

If you've been living under a rock (or rack in the data center) you might not have noticed the explosive growth of technologies and architectures designed to address emerging challenges with scaling data centers. Whether considering the operational aspects (devops) or technical components (SDN, SDDC, Cloud), software-defined architectures are the future enabler of business, fueled by the increasing demand for applications.

The Internet of Things is only going to make that even more challenging as businesses turn to new business models and services fueled by a converging digital-physical world. Applications, whether focused on licensing, provisioning, managing or storing data for these "things" will increase the already significant burden on IT as a whole. The inability to scale from an operational perspective is really what software-defined architectures are attempting to solve by operationalizing the network to shift the burden of provisioning and management from people to technology.

But it's more than just API-enabling switches, routers, ADCs and other infrastructure components. While this is a necessary capability to ensure the operational scalability of modern data centers, what's really necessary to achieve the next "level" is collaboration.

That means infrastructure integration.

it is one thing to be able to automatically provision the network, compute and storage resources necessary to scale to meet the availability and performance expectations of users and businesses alike. But that's the last step in the process. Actually performing the provisioning is the action that's taken after it's determined not only that it's necessary, but where it's necessary.

Workloads (and I hate that term but it's at least somewhat universally understood so I'll acquiesce to using it for now) have varying characteristics with respect to the compute, network and storage they require to perform optimally. That's means provisioning a "workload" in a VM with characteristics that do not match the requirements is necessarily going to impact its performance or load capability. If one is making assumptions regarding the number of users a given application can support, and it's provisioned with a resource profile that impacts that support, it can lead to degrading performance or availability.

What that means is the systems responsible for provisioning "workloads" must be able to match resource requirements with the workload, as well as understand current (and predicted) demand in terms of users, connections and network consumption rates.

Data, is the key. Measurements of performance, rates of queries, number of users, and the resulting impact on the workload must be captured. But more than that, it must be shared with the systems responsible for provisioning and scaling the workloads.

Location Matters

This is not a new concept, that we should be able to share data across systems and services to ensure the best fit for provisioning and seamless scale demanded of modern architectures. A 2007 SIGMOD paper, "Automated and On-Demand Provisioning of Virtual Machines for Database Applications" as well as a 2010 IEEE paper, "Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center" discuss the need for such provisioning models and the resulting architectures rely heavily on the collaboration of the data center components responsible for measuring, managing and provisioning workloads in cloud computing environments through integration.

The location of a workload, you see, matters. Not location as in "on-premise" or "off-premise", though that certainly has an impact, but the location within the data center matters to the overall performance and scale of the applications composed from those workloads. The location of a specific workload comparative to other components impacts availability and traffic patterns that can result in higher incidents of north-south or east-west congestion in the network. Location of application workloads can cause hairpinning (or tromboning if you prefer) of traffic that may degrade performance or introduce variable latency that degrades the quality of video or audio content.

Location matters a great deal, and yet the very premise of cloud is to abstract topology (location) from the equation and remove it from consideration as part of the provisioning process.

Early in the life of public cloud there was concern over not knowing "who your neighbor tenant" might be on a given physical server, because there was little transparency into the decision making process that governs provisioning of instances in public cloud environments. The depth of such decisions appeared to - and still appear to - be made based on your preference for the "size" of an instance. Obviously, Amazon or Azure or Google is not going to provision a "large" instance where only a "small" will fit.

But the question of where, topologically, that "large" instance might end up residing is still unanswered. It might be two hops away or one virtual hop away. You can't know if your entire application - all its components - have been launched on the same physical server or not. And that can have dire consequences in a model that's "built to fail" because if all your eggs are in one basket and the basket breaks... well, minutes of downtime is still downtime.

The next evolutionary step in cloud (besides the emergence of much needed value added services) is more intelligent provisioning driven by better feedback loops regarding the relationship between the combination of compute, network and storage resources and the application. Big (Operational) Data is going to be as important to IT as Big (Customer) Data is to the business as more and more applications and services become critical to the business.

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

Latest Stories from Big Data Journal
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed wi...
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, B...
SYS-CON Events announced today that Connected Data, the creator of Transporter, the world’s first peer-to-peer private cloud storage device, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Connected Data is the creator of Transporter, the world’s first peer-to-peer private cloud storage device. Connected Data is focused on providing elegantly designed solutions for consumers, professi...
Goodness there is a lot of talk about cloud computing. This ‘talk and chatter’ is part of the problem, i.e., we look at it, we prod it and we might even test it out – but do we get down to practical implementation, deployment and (if you happen to be a fan of the term) actual cloud ‘rollout’ today? Cloud offers the promise of a new era they say – and a new style of IT at that. But this again is the problem and we know that cloud can only deliver on the promises it makes if it is part of a well...
Cisco on Wedesday announced its intent to acquire privately held Metacloud. Based in Pasadena, Calif., Metacloud deploys and operates private clouds for global organizations with a unique OpenStack-as-a-Service model that delivers and remotely operates production-ready private clouds in a customer's data center. Metacloud's OpenStack-based cloud platform will accelerate Cisco's strategy to build the world's largest global Intercloud, a network of clouds, together with key partners to address cu...
I write and study often on the subject of digital transformation - the digital transformation of industries, markets, products, business models, etc. In brief, digital transformation is about the impact that collected and analyzed data can have when used to enhance business processes and workflows. If Amazon knows your preferences for particular books and films based upon captured data, then they can apply analytics to predict related books and films that you may like. This improves sales. T...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the “Internet of Things” (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, will discuss the real...
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is n...
When one expects instantaneous response from video generated on the internet, lots of invisible problems have to be overcome. In his session at 6th Big Data Expo®, Tom Paquin, EVP and Chief Technology Officer at OnLive, to discuss how to overcome these problems. A Silicon Valley veteran, Tom Paquin provides vision, expertise and leadership to the technology research and development effort at OnLive as EVP and Chief Technology Officer. With more than 20 years of management experience at lead...
BlueData aims to “democratize Big Data” with its launch of EPIC Enterprise, which it calls “the industry’s first Big Data software to enable enterprises to create a self-service cloud experience on premise.” This self-service private cloud allows enterprises to create 100-node Hadoop and Spark clusters in less than 10 minutes. The company is also offering a Community Edition via free download. We had a few questions for BlueData CEO Kumar Sreekanti about all this, and here's what he had to s...