Welcome!

@DXWorldExpo Authors: Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Pat Romanski, Elizabeth White

Blog Feed Post

Deep Learning at Stanford

by Joseph Rickert Last week,I had the opportunity to participate in the Second Academy of Science and Engineering (ASE) Conference on Big Data Science and Computing at Stanford University. Since the conference was held simultaneously with the two other conferences, one on Social Computing and the other on Cyber Security, it was definitely not an R crowd, and not even a  typical Big Data crowd. Talks from the three programs were intermixed throughout the day so at any given moment you could find yourself looking for common ground in a conversation with mostly R aware, but language impartial fellow attendees. I don’t know whether this method of organization was the desperate result of necessity or genius, but I thought it worked out very well and made for a stimulating interaction dynamic. The ASE conference must have been difficult program to set up. The organizers, however, did a wonderful job mashing talks and themes together to make for an excellent experience. There were several very good talks at the conference, however, the tutorial on Deep Learning and Natural Language Processing given by Richard Socher was truly outstanding. Richard is a PhD student in Stanford’s Computer Science Department studying under Chris Manning and Andrew Ng. Very rarely do you come across such a polished speaker with complete and casual command of complex material. And, while the delivery was impressive the content was jaw dropping. Richard walked through the Deep Learning methodology and tools being developed in Stanford’s AI lab and showed a number of areas where the Deep Learning techniques are yielding notable results; for example, a system for single sentence sentiment detection that improved positive/negative sentence classification by 5.4%. Have a look at Andrew Ng’s or Christopher Manning’s lists of publications to get a good idea of the outstanding work that is being done in this area. A key concept covered in the tutorial is the ability to represent natural language structures, parsing trees for example, in a finite dimensional vector space and to build the theoretical and software tools in such a way that same method can be use to deconstruct and represent other hierarchies. The following slide indicates how a structures build for Natural Language Processing (NLP) can also be used to represent images. This ability to bring a powerful, integrated set of tools to many different areas seems to be a key reason why neural nets and Deep Learning are suddenly getting so much attention. In a tutorial similar to the one Richard gave on Saturday, Richard and Chris Manning attribute the recent resurgence of Deep Learning to three factors: New methods for unsupervised pre-training: Restricted Boltzmann Machines (RBMs), autoencoders and contrastive estimation More efficient parameter estimation methods Better understanding of model regularization The software used in the NLP and Deep Learning work at Stanford seems to be mostly based on Python and C. (See theano and Senna for example.) So far, it does not appear that much Deep Learning work at all is being done with R. However, things are looking up. 0xdata’s H20 Deep Learning implementation is showing impressive results, and the this algorithm is available in the h20 R package. Also, the R package darch and the very recent deepnet package, both of which offer implementations of Restricted Boltzman Machines, indicate that Deep Learning researchers are working in R. Finally, to get a quick overview of the area have a look at  the book, Deep Learning: Methods and Applications by Li Deng and Dony Yu of Microsoft Research is available online.

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

DXWorldEXPO Digital Transformation Stories
JETRO showcased Japan Digital Transformation Pavilion at SYS-CON's 21st International Cloud Expo® at the Santa Clara Convention Center in Santa Clara, CA. The Japan External Trade Organization (JETRO) is a non-profit organization that provides business support services to companies expanding to Japan. With the support of JETRO's dedicated staff, clients can incorporate their business; receive visa, immigration, and HR support; find dedicated office space; identify local government subsidies; get...
Digital Transformation is well underway with many applications already on the cloud utilizing agile and devops methodologies. Unfortunately, application security has been an afterthought and data breaches have become a daily occurrence. Security is not one individual or one's team responsibility. Raphael Reich will introduce you to DevSecOps concepts and outline how to seamlessly interweave security principles across your software development lifecycle and application lifecycle management. With ...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science" is responsible for guiding the technology strategy within Hitachi Vantara for IoT and Analytics. Bill brings a balanced business-technology approach that focuses on business outcomes to drive data, analytics and technology decisions that underpin an organization's digital transformation strategy.
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
Behera Rasananda is a technologist, a leader, a key note speaker has more than 20 years experience in across Government, Financial, Heath Care and Insurance Verticals. Mr. Behera has vast experience in Enterprise Cloud and Big Data solutions and Enterprise Architecture. Currently he works closely for Government Solutions on Enterprise Cloud for Federal Government Agency. Scientist Behera managed and partner with clients to make complete end to end solution and Migration to cloud both private sec...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Cloud applications are seeing a deluge of requests to support the exploding advanced analytics market. “Open analytics” is the emerging strategy to deliver that data through an open data access layer, in the cloud, to be directly consumed by external analytics tools and popular programming languages. An increasing number of data engineers and data scientists use a variety of platforms and advanced analytics languages such as SAS, R, Python and Java, as well as frameworks such as Hadoop and Spark...
The technologies behind big data and cloud computing are converging quickly, offering businesses new capabilities for fast, easy, wide-ranging access to data. However, to capitalize on the cost-efficiencies and time-to-value opportunities of analytics in the cloud, big data and cloud technologies must be integrated and managed properly. Pythian's Director of Big Data and Data Science, Danil Zburivsky will explore: The main technology components and best practices being deployed to take advantage...