@DXWorldExpo Authors: Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Pat Romanski, Elizabeth White

Blog Feed Post

Data Sets for Data Science

by Joseph Rickert Recently, I had the opportunity to be a member of a job panel for Mathematics, Economics and Statistics students at my alma mater, CSUEB (California State University East Bay). In the context of preparing for a career in data science a student at the event asked: “Where can I find good data sets?”. This triggered a number of thoughts: the first being that it was time to update the list of data sets that I maintain and blog about from time to time. So, thanks to that reminder I have added a few new links to the page, including a new section called Data Science Practice that links to some of the data sets used as examples in Doing Data Science by Rachel Schutt and Cathy O’Neil.  Additionally, I have provided a direct link to the BigData Tag on infochimps and pointed out that multiple song data sets are available. However, to do justice to student’s question it is necessary to give some thought to exactly what a “good” practice data set might look like. Here are three characteristics that I think a practice data set should have to be good: It should be big enough to pose some computational challenges without being so big that it requires a cluster or some specialized hardware just to get started. It should require some cleaning or pre-processing (making decisions about mission data for example) but not appear to be hopelessly corrupt; dirty but not to dirty. It should be rich enough that once you have gone through the trouble of accessing and cleaning it there are enough variables or features to suggest multiple questions to analyze, or make it possible to try out different machine learning algorithms. Here are three data sets that meet these criteria in ascending order of degree of difficulty: The first suggestion is the MovieLens data set which contains a million ratings applied to over 10,000 movies by more than 71,000 users. The download comes in two sizes, the full set, and a 100K subset. Both versions require working with multiple files. Near the top of anybody’s list of practice data sets, and second on my little list because of degree of difficulty is the airlines data set from the 2009 ASA challenge. This data set which contains the arrival and departure information for all domestic flights from 1987 to 2008 has become the “iris” data set for Big Data. With over 123M rows it is too big to it into your laptop’s memory and with 29 variables of different types it is rich enough to suggest several analyses. Moreover, although the version of the data set maintained on the ASA website is fixed and therefore perfect for benchmarking, the Research and Innovative Technology Administration Bureau of Transportation Statistics continues to add to the data on a monthly basis. Go to RITA to get all of the data collected since the ASA competition ended.    Last on my short list is the Million Song data set. This contains features and meta data for one million songs which were originally provided by the music intelligence company Echo Nest. The data is in the specialized HDF5 format which makes it somewhat of a challenge to access. The data set maintainers do provide wrapper functions to facilitate downloading the data and avoiding some of the complexities of the HDF5 format. However, there are no R wrappers! The last I checked, the maintainers had a paragraph about there being a problem with their code along with an invitation for R experts to contact them (This would clearly be for extra points.) For more details about the contents of the data set look here. As a final note, it is much easier use R to analyze the Public Data Sets available through Amazon Web Services now that you can run Revolution R Enterprise in the Amazon Cloud. We hope to have more to say about exactly how to go about doing this in a future post. However, everything you need to get started is in place including a 14 day free trial (Amazon charges apply) for Revolution R Enterprise. All you need is your own Amazon account. Please let me know if you have additional links to useful, publically available data sets that I have missed. We very much appreciate the contributions blog readers have made to the list of data sets.  

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

DXWorldEXPO Digital Transformation Stories
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
DXWorldEXPO LLC announced today that Telecom Reseller has been named "Media Sponsor" of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Daniel Jones is CTO of EngineerBetter, helping enterprises deliver value faster. Previously he was an IT consultant, indie video games developer, head of web development in the finance sector, and an award-winning martial artist. Continuous Delivery makes it possible to exploit findings of cognitive psychology and neuroscience to increase the productivity and happiness of our teams.
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to great conferences, helping you discover new conferences and increase your return on investment.
Using new techniques of information modeling, indexing, and processing, new cloud-based systems can support cloud-based workloads previously not possible for high-throughput insurance, banking, and case-based applications. In his session at 18th Cloud Expo, John Newton, CTO, Founder and Chairman of Alfresco, described how to scale cloud-based content management repositories to store, manage, and retrieve billions of documents and related information with fast and linear scalability. He addresse...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...