Welcome!

@DXWorldExpo Authors: Zakia Bouachraoui, Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski

Related Topics: @DXWorldExpo, Java IoT, Microservices Expo, Containers Expo Blog, @CloudExpo, SDN Journal

@DXWorldExpo: Blog Feed Post

Big Data, Big Service, and Big Ecosystem

There are basically two aspects in this: Big Data as a Service, and Big Data for Big Service

In a recent panel session I chaired, a question was raised from audience in the Q&A part about how to relate Big Data and Big Service. There are basically two aspects in this: Big Data as a Service, and Big Data for Big Service.

  • Big Data as a Service: BDaaS is to a large extent Big Data cloudification. We build Big Data as a capability to collect, transform, import, store, process, query, analyze, explore, predict, export, search,visualize, and display a large amount of data. Then we expose this capability as a service in a SaaS fashion, so users can leverage it to quickly solve business problems without worrying about the low-level plumbing activities. Alternatively, part of these components are developed as PaaS functions, so that they can be consumed or assembled as cloud services at a more granular level.
  • Big Data for Big Service: Big Data is a core element of Big Service, which provides business functions and technology means in a service-oriented manner for large-scale complex solutions. Big Service entails various constituents such as Big Application and Big Process. Big Data deals with data-intensive issues and design concerns, particularly the non-functional requirements like scalability, in a combination of SQL and NoSQL hybrid. Together, they form an integrated Big Service platform that realizes and supports the business model and operations.

Further, Big Service is linked to Big Ecosystem for the next-generation digital paradigm. For example, mobile devices and access channels are important interfacing constructs to end users. An elastic computing fabric for Internet of Things must be tied with contents and semantic contexts. Technology enablers ought to go beyond the traditional business and technology values – societal impacts, consumerization, and crowdX, to name just a few. In essence, we need a discipline of “Big Engineering” to tackle the contemporary problems of Big Ecosystem in this new era.

 

For more information, please contact Tony Shan ([email protected]). ©Tony Shan. All rights reserved.

Read the original blog entry...

More Stories By Tony Shan

Tony Shan works as a senior consultant, advisor at a global applications and infrastructure solutions firm helping clients realize the greatest value from their IT. Shan is a renowned thought leader and technology visionary with a number of years of field experience and guru-level expertise on cloud computing, Big Data, Hadoop, NoSQL, social, mobile, SOA, BI, technology strategy, IT roadmapping, systems design, architecture engineering, portfolio rationalization, product development, asset management, strategic planning, process standardization, and Web 2.0. He has directed the lifecycle R&D and buildout of large-scale award-winning distributed systems on diverse platforms in Fortune 100 companies and public sector like IBM, Bank of America, Wells Fargo, Cisco, Honeywell, Abbott, etc.

Shan is an inventive expert with a proven track record of influential innovations such as Cloud Engineering. He has authored dozens of top-notch technical papers on next-generation technologies and over ten books that won multiple awards. He is a frequent keynote speaker and Chair/Panel/Advisor/Judge/Organizing Committee in prominent conferences/workshops, an editor/editorial advisory board member of IT research journals/books, and a founder of several user groups, forums, and centers of excellence (CoE).

DXWorldEXPO Digital Transformation Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...