Welcome!

@DXWorldExpo Authors: Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Pat Romanski, Elizabeth White

Related Topics: @DXWorldExpo, Open Source Cloud

@DXWorldExpo: Blog Post

Hadoop Deep Dive: HDFS and MapReduce

How does Hadoop process data? What is MapReduce?

Following my initial introduction to Hadoop and overview of Hadoop components, I studied the Yahoo Hadoop tutorial,  and have a deeper understanding of Hadoop. I  would like to share my learning and help others understand Hadoop.

Why does Hadoop require HDFS, what's wrong with NFS?

Nothing! NFS been around for years and is incredibly stable. A distributed file system, such as NFS, provides the functionality required for servers to share files. It does this by exposing a volume to the network, which users connect to over the TCP/IP protocol.

For Hadoop applications that require highly available distributed file systems with unlimited capacity HDFS is preferred. The following table outlines where NFS is deficient for Hadoop and where HDFS solves the limitation.

NFS limitation Hadoop optimization
What happens when the volume is full? No more files can be stored. HDFS stores information (terabytes or petabytes) across many servers. HDFS supports larger file sizes than NFS
What happens if a volume or server fails? There is no built-in redundancy. HDFS stores data reliably. If a server in the cluster fails, the data is still available on other servers.
NTFS & EXT3 file systems typically used by NFS have 4-8KB block sizes that result in large metadata about each file and multiple reads from the file system. The default block size in HDFS is 64MB, which results in fewer files to store and decreased metadata information stored for each file. HDFS is optimized to provide streaming read performance, rather than random seek to arbitrary positions in files
Most NFS administration is command line or included with overall system management tools. HDFS provides a web server to perform status monitoring and file browsing operations (by default port 50070).

Hadoop can exploit HDFS and thus:

  • Hadoop is aware of physical racks that span more than one network switch. Replicas of the data exist across racks, thus if a physical switch fails, the data is available from another server rack.
  • There is no local caching since files are large and sequentially read
  • HDFS reads a block start-to-finish for the Hadoop MapReduce application. MapReduce? Read on....

What is MapReduce?

MapReduce is a programming model to process large volumes of data, usually tuple (pair) lists, for example:

  • city, temperature
  • student, grade
  • car, maximum speed

MapReduce accomplishes this in parallel by dividing the work into independent tasks, spread across many nodes (servers). This model would not scale to large clusters (hundreds or thousands of nodes) if the components shared data arbitrarily. The communication overhead required to keep the data on the nodes synchronized would be inefficient. Rather, the data elements in MapReduce are immutable, meaning that they cannot be updated. Example, if during a MapReduce job, input data is changed eg. (modifying a student grade or car's speed) the change does not get reflected in the input files; instead new output (key, value) pairs are generated which are then forwarded by Hadoop into the next phase of execution.

Driver

The driver initializes the job and instructs Hadoop to execute the job on a set of input files, and controls where the output files are placed. Pretty simple.

Map

The map portion of MapReduce provides a list of data elements, one at a time, to a function called the Mapper. The mapper transforms each input element to an output data element.

Reduce

Reducing aggregates the values together.  A reducer function receives the input values from an input list, then combines these values together, returning a single output value; example: average car speed, student grade or city temperature.

Sounds simple? At a high level yes, details details...

The mapper produces one output element for each input element, and a reducer produces one output element for each input list. A map job may input into zero or more outputs; a reducer may compute over an input list and create one or more  outputs.

What if the amount of data to reduce is enormous? Keys divide the reduce space: A reducing function turns a large list of values into one (or a few) output values but may not be reduced together. All of the values with the same key are presented to a single reducing function together. This is performed independently of any reduce operations occurring on other lists of values, with different keys attached. So in our example, perhaps all the Toyota vehicles are reduced together, Ford vehicles in another group and Chevrolet in a third set; similarly grade 10 kids' scores are reduced in one set, grade 11 in another etc.

So why is HDFS needed for MapReduce?

The map jobs: MapReduce inputs come from input files loaded which are evenly distributed across all servers. Executing a MapReduce program involves running mapping tasks on many or all of the nodes. Each of these mapping tasks is identical, therefore, any mapper can process any input file. Each mapping job loads the files on that server and processes them. Thus data is processed at the node where it exists and not copied to a central server (see my introductory article for more details). Individual map tasks do not communicate with one another, nor are they aware of one another's existence.

The reduce jobs:
When the mapping phase has completed, the intermediate (key, value) pairs must be exchanged between servers to send all values with the same key to a single reduce job. To illustrate the example above, all the values from the Toyota vehicles must be sent to the reduce job responsible for Toyota; similarly for other vehicles, city temperatures and class grades must be sent to their unique reduce function. The reduce tasks are spread across the same nodes in the Hadoop cluster as the map jobs. Similarly, different reduce tasks do not communicate with one another.

If servers in the Hadoop cluster fail, the map or reduce tasks must be able to be restarted. Thus a highly scalable and fault tolerant file system like HDFS is required for successful MapReduce jobs.

Fault tolerance HDFS is key

Hadoop achieves fault tolerance by restarting tasks when a server (node) fails. Individual task nodes (TaskTrackers) communicate with the head node of the system (JobTracker). If a TaskTracker fails to communicate with the JobTracker  (by default, 1 minute), the JobTracker will assume that the specific TaskTracker has failed. The JobTracker knows which map and reduce tasks were assigned to each TaskTracker; other TaskTrackers will re-execute a failed map or reduce job.

Completed reduce tasks, are written back to HDFS. Thus, if a TaskTracker has already completed two out of three reduce tasks assigned to it, only the third task must be executed on another node/server.
Hadoop code should have no 'side effects'
If Map and Reduce jobs had individual identities and communicated with one another (rather than the TaskTracker) , then restarting a task would require the other nodes to communicate with the new instances of the map and reduce tasks, and the re-executed tasks would need to reestablish their prior state.  An individual task sees only its own direct inputs and knows only its own outputs, to make this failure and restart process clean and dependable.

Sounds complicated? Try a tutorial download from HortonWorks, Cloudera or Yahoo.

Image below show two nodes, multiple mappers and reducers; courtesy of Yahoo Hadoop tutorial, module 4

More Stories By Jonathan Gershater

Jonathan Gershater has lived and worked in Silicon Valley since 1996, primarily doing system and sales engineering specializing in: Web Applications, Identity and Security. At Red Hat, he provides Technical Marketing for Virtualization and Cloud. Prior to joining Red Hat, Jonathan worked at 3Com, Entrust (by acquisition) two startups, Sun Microsystems and Trend Micro.

(The views expressed in this blog are entirely mine and do not represent my employer - Jonathan).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


DXWorldEXPO Digital Transformation Stories
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the tec...
Disruption, Innovation, Artificial Intelligence and Machine Learning, Leadership and Management hear these words all day every day... lofty goals but how do we make it real? Add to that, that simply put, people don't like change. But what if we could implement and utilize these enterprise tools in a fast and "Non-Disruptive" way, enabling us to glean insights about our business, identify and reduce exposure, risk and liability, and secure business continuity?
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
"We host and fully manage cloud data services, whether we store, the data, move the data, or run analytics on the data," stated Kamal Shannak, Senior Development Manager, Cloud Data Services, IBM, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
DXWorldEXPO LLC announced today that Telecom Reseller has been named "Media Sponsor" of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.