Welcome!

@DXWorldExpo Authors: Elizabeth White, William Schmarzo, Jnan Dash, Mehdi Daoudi, John Katrick

Related Topics: @DXWorldExpo, Java IoT, Machine Learning , @CloudExpo, Apache, SDN Journal

@DXWorldExpo: Article

So What? – Monitoring Hadoop Beyond Ganglia

Don’t just run Hadoop jobs at scale, run them efficiently and at scale

Over the last couple of months I have been talking to more and more customers who are either bringing their Hadoop clusters into production or have already done so and are now getting serious about operations. This leads to some interesting discussions about how to monitor Hadoop properly and one thing pops up quite often: Do they need anything beyond Ganglia? If yes, what should they do beyond it?

The Basics
As in every other system, monitoring in a Hadoop environment starts with the basics: System Metrics - CPU, Disk, Memory you know the drill. Of special importance in a Hadoop system is a well-balanced cluster; you don't want to have some nodes being much more (or less) utilized then others. Besides CPU and memory utilization, Disk utilization and of course I/O throughput is of high importance. After all the most likely bottleneck in a Big Data system is I/O - either with ingress (network and disk), moving data around (e.g., MapReduce shuffle on the network) and straightforward read/write to disk.

The problem in a Hadoop system is of course its size. Nothing new for us, some of our customers monitor well beyond 1000+ JVMs with CompuwareAPM. The "advantage" in a Hadoop system is its relative conformity - every node looks pretty much like the other. This is what Ganglia leverages.

Cluster Monitoring with Ganglia
What Ganglia is very good at is providing an overview over how a cluster is utilized. The load chart is particularly interesting:

This chart shows the CPU load on a 1000 Server cluster that has roughly 15.000 CPUs

It tells us the number of available cores in the system and the number of running processes (in theory a core can never handle more than one process at a time) and the 1-min load average. If the system is getting fully utilized the 1-min load average would approach the total number of CPUs. Another view on this is the well-known CPU utilization chart:

CPU Utilization over the last day. While the utilization stays well below 10% we see a lot of I/O wait spikes.

While the load chart gives a good overall impression of usage, the utilization tells us the story of how the CPUs are used. While typical CPU charts show a single server, Ganglia specializes in showing whole clusters (the picture shows CPU usage of a 1000 machine cluster). In the case of the depicted chart we see that the CPUs are experiencing a lot of I/O wait spikes, which points toward heavy disk I/O. Basically it seems the disk I/O is the reason that we cannot utilize our CPU better at these times. But in general our cluster is well underutilized in terms of CPU.

Trends are also easy to understand, as can be seen in this memory chart over a year.

Memory capacity and usage over a year

All this looks pretty good, so what is missing? The "so what" and "why" is what is missing. If my memory demand is growing, I have no way of knowing why it is growing. If the CPU chart tells me that I spend a lot of time waiting, it does not tell what to do, or why that is so? These questions are beyond the scope of Ganglia.

What about Hadoop specifics?
Ganglia also has a Hadoop plugin, which basically gives you access to all the usual Hadoop metrics (unfortunately a comprehensive list of Hadoop metrics is really hard to find, appreciate if somebody commented the link). There is a good explanation on what is interesting on Edward Caproli's page: JoinTheGrid. Basically you can use those metrics to monitor the capacity and usage trends of HDFS and the NameNodes and also how many jobs, mappers and reducers are running.

Capacity of the DataNodes over time

Capacity of the Name Nodes over time

The DataNode Operations give me an impression of I/O pressure on the Hadoop cluster

All these charts can of course be easily built in any modern monitoring or APM solution like CompuwareAPM, but Ganglia gives you a simple starting point; and it's Free as in Beer.

What's missing again is the so what? If my jobs are running a lot longer than yesterday, what should I do? Why do they run longer? A Hadoop expert might dig into 10 different charts around I/O and Network, spilling, look at log files among other things and try an educated guess as to what might be the problem. But we aren't all experts, neither do we have the time to dig into all of these metrics and log files all the time.

This is the reason that we and our customers are moving beyond Ganglia - to solve the "Why" and "So What" within time constraints.

Beyond the Basics #1 - Understanding Cluster Utilization
A use case that we get from customers is that they want to know which users or which pools (in case of the fair scheduler) are responsible for how much of the cluster utilization. LinkedIn just released White Elephant, a tool that parses MapReduce logs and builds some nice dashboards and shows you which of your users occupy how much of your cluster. This is of course based on log file analysis and thus okay for analysis but not for monitoring. With proper tools in place we can do the same thing in near real time.

The CPU Usage in the Hadoop Cluster on per User basis

In this example I wanted to monitor which user consumed how much of my Amazon EMR cluster. If we see a user or pool that occupies a lot of the cluster we can course also see which jobs are running and how much of the cluster they occupy.

The CPU Usage in the Hadoop Cluster on per Job basis

And this will also tell us if that job has always been there, and just uses a lot more resources now. This would be our cue to start analyzing what has changed.

Beyond the Basics #2 - Understanding why my jobs are slow(er)
If we want to understand why a job is slow we need to look at a high-level break down first.

In which phase of the map reduce do we spend the most time, or did we spend more time than yesterday? Understanding these timings in context with the respective job counters, like Map Input or Spilled Records, helps us understand why the phase took longer.

Overview of the time spent in different phases and the respective input/output counters

At this point we will already have a pretty good idea as to what happened. We either simply have more data to crunch (more input data) or a portion of the MapReduce job consumes more CPU (code change?) or we spill more records to disk (code change or Hadoop config change?). We might also detect an unbalanced cluster in the performance breakdown.

This job is executing nearly exclusively on a single node instead of distributing

In this case we want to check whether all the involved nodes processed the same amount of data

Here we see that there is a wide range from minimum, average to maximum on mapped input and output records. The data is not balanced

or if the difference can again be found in the code (different kinds of computations). If we are running against HBase we might of course have an issue with HBase performance or distribution.

At the beginning of the job only a single HBase region Server consumes CPU while all others remain idle

On the other hand, if a lot of mapping time is spent in the garbage collector then you should maybe invest in larger JVMs.

The Performance Breakdown of this particular job shows considerable time in GC suspension

If spilling data to disk is where we spend our time, we should take a closer look at that phase. It might turn out that all of our time is spent on disk wait.

If the Disk were the bottleneck we would see it on disk I/O here

Now if disk write is our bottleneck, then really the only thing that we can do is reduce the map output records. Adding a combiner will not reduce the disk write (it will actually increase it, read here). In other words combining only optimizes the shuffle phase, thus the amount of data sent over the network, but not spill time!!

And at the very detailed level we can look at single task executions and understand in detail what is really going on.

The detailed data about each Map, Reduce Task Atttempt as well as the spills and shuffles

Conclusion
Ganglia is a great tool for high-level monitoring of your Hadoop cluster utilization, but it is not enough. The fact that everybody is working on additional means to understand the Hadoop cluster (Hortonworks with Ambari, Cloudera with their Manager, LinkedIn with White Elephant, the Star Fish project...) shows that there is a lot more needed beyond simple monitoring. Even those more advanced monitoring tools are not always answering the "why" though, which is what we really need to do. This is where the Performance Management discipline can add a lot of value and really help you get the best out of your Hadoop cluster. In other words don't just run Hadoop jobs at scale, run them efficiently and at scale!

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@BigDataExpo Stories
"ZeroStack is a startup in Silicon Valley. We're solving a very interesting problem around bringing public cloud convenience with private cloud control for enterprises and mid-size companies," explained Kamesh Pemmaraju, VP of Product Management at ZeroStack, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
"Codigm is based on the cloud and we are here to explore marketing opportunities in America. Our mission is to make an ecosystem of the SW environment that anyone can understand, learn, teach, and develop the SW on the cloud," explained Sung Tae Ryu, CEO of Codigm, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
In his session at 21st Cloud Expo, Carl J. Levine, Senior Technical Evangelist for NS1, will objectively discuss how DNS is used to solve Digital Transformation challenges in large SaaS applications, CDNs, AdTech platforms, and other demanding use cases. Carl J. Levine is the Senior Technical Evangelist for NS1. A veteran of the Internet Infrastructure space, he has over a decade of experience with startups, networking protocols and Internet infrastructure, combined with the unique ability to it...
High-velocity engineering teams are applying not only continuous delivery processes, but also lessons in experimentation from established leaders like Amazon, Netflix, and Facebook. These companies have made experimentation a foundation for their release processes, allowing them to try out major feature releases and redesigns within smaller groups before making them broadly available. In his session at 21st Cloud Expo, Brian Lucas, Senior Staff Engineer at Optimizely, discussed how by using ne...
"There's plenty of bandwidth out there but it's never in the right place. So what Cedexis does is uses data to work out the best pathways to get data from the origin to the person who wants to get it," explained Simon Jones, Evangelist and Head of Marketing at Cedexis, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Large industrial manufacturing organizations are adopting the agile principles of cloud software companies. The industrial manufacturing development process has not scaled over time. Now that design CAD teams are geographically distributed, centralizing their work is key. With large multi-gigabyte projects, outdated tools have stifled industrial team agility, time-to-market milestones, and impacted P&L stakeholders.
Gemini is Yahoo’s native and search advertising platform. To ensure the quality of a complex distributed system that spans multiple products and components and across various desktop websites and mobile app and web experiences – both Yahoo owned and operated and third-party syndication (supply), with complex interaction with more than a billion users and numerous advertisers globally (demand) – it becomes imperative to automate a set of end-to-end tests 24x7 to detect bugs and regression. In th...
"Infoblox does DNS, DHCP and IP address management for not only enterprise networks but cloud networks as well. Customers are looking for a single platform that can extend not only in their private enterprise environment but private cloud, public cloud, tracking all the IP space and everything that is going on in that environment," explained Steve Salo, Principal Systems Engineer at Infoblox, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventio...
"Akvelon is a software development company and we also provide consultancy services to folks who are looking to scale or accelerate their engineering roadmaps," explained Jeremiah Mothersell, Marketing Manager at Akvelon, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Agile has finally jumped the technology shark, expanding outside the software world. Enterprises are now increasingly adopting Agile practices across their organizations in order to successfully navigate the disruptive waters that threaten to drown them. In our quest for establishing change as a core competency in our organizations, this business-centric notion of Agile is an essential component of Agile Digital Transformation. In the years since the publication of the Agile Manifesto, the conn...
SYS-CON Events announced today that CrowdReviews.com has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5–7, 2018, at the Javits Center in New York City, NY. CrowdReviews.com is a transparent online platform for determining which products and services are the best based on the opinion of the crowd. The crowd consists of Internet users that have experienced products and services first-hand and have an interest in letting other potential buye...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
SYS-CON Events announced today that Telecom Reseller has been named “Media Sponsor” of SYS-CON's 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
DevOps promotes continuous improvement through a culture of collaboration. But in real terms, how do you: Integrate activities across diverse teams and services? Make objective decisions with system-wide visibility? Use feedback loops to enable learning and improvement? With technology insights and real-world examples, in his general session at @DevOpsSummit, at 21st Cloud Expo, Andi Mann, Chief Technology Advocate at Splunk, explored how leading organizations use data-driven DevOps to close th...
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
"We are an integrator of carrier ethernet and bandwidth to get people to connect to the cloud, to the SaaS providers, and the IaaS providers all on ethernet," explained Paul Mako, CEO & CTO of Massive Networks, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
Sanjeev Sharma Joins June 5-7, 2018 @DevOpsSummit at @Cloud Expo New York Faculty. Sanjeev Sharma is an internationally known DevOps and Cloud Transformation thought leader, technology executive, and author. Sanjeev's industry experience includes tenures as CTO, Technical Sales leader, and Cloud Architect leader. As an IBM Distinguished Engineer, Sanjeev is recognized at the highest levels of IBM's core of technical leaders.