Welcome!

Big Data Journal Authors: Carmen Gonzalez, Elizabeth White, Dana Gardner, Liz McMillan, Esmeralda Swartz

Related Topics: Big Data Journal, Java, Open Source, Virtualization, Red Hat, Cloud Expo

Big Data Journal: Blog Feed Post

Big Data – Storage Mediums and Data Structures

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

My working title was Big Data, Storage Dilemma.

They say dilemma. I say dilemna. I'm serious. I spell it dilemna.

Big Data presents something of a storage dilemma. There is no one data store to rule them all.

Should different data structures be persisted to different storage mediums?

Storage Medium
Identifying the appropriate medium is a function of performance, cost, and capacity.

Random Access Memory
It's fast. Very. It's expense. Very.

If we are configuring an HP DL980 G7 server, it will cost $3,672 for 128GB of memory with 8x 16GB modules or $9,996 for 128GB of memory with 4x 32GB modules. That is $28-78 / GB.

We can configure an HP DL980 G7 server with up to 4TB of memory.

Solid State Drive
It's not as fast or as expensive as random access memory. It's faster than a hard disk drive. A lot faster. It's more expensive than a hard disk drive. A lot more expensive.

If we are configuring an HP DL980 G7 server, it will cost $4,199 for a 400GB SAS MLC drive or $7,419 for a 400GB SAS SLC drive. That is $10-18 / GB. It's a performance / size trade-off. While SLC drives often perform better, MLC drives are often available in larger sizes. Further, the read / write performance is either symmetric or asymmetric.

That, and SLC drives often have greater endurance.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 520 (480GB) 550 520 50,000 50,000
Intel 520 (240GB) 550 520 50,000 80,000
Intel DC S3700 500 460 75,000 36,000

The performance of solid state drives can vary:

  • consumer / enterprise
  • MLC / eMLC / SLC
  • SATA / SAS / PCIe

The capacity of enterprise solid state drives is often less than that of enterprise hard disk drives (4TB). However, the capacity of PCIe drives such as the Fusion-io ioDrive Octal (5.12TB / 10.24TB) is greater than that of enterprise hard disk drives (4TB). In addition, the performance of PCIe drives is greater than that of SAS or SATA drives.


Sequential
Read
(MB/s)
Sequential
Write
(MB/s)
Random
Read
(IOPS)
Random
Write
(IOPS)
Intel 910 (800GB) 2,000 1,000 180,000 75,000

Hard Disk Drive

It may not be fast, but it is inexpensive.

If we are configuring an HP DL980 G7 server, it will cost $309 for a 300GB 10K drive or $649 for a 300GB 15K drive. That is $1-2 / GB. It's a performance / size trade-off. While a 15K drive will perform better than a 10K drive, it will often have less capacity. The sequential read / write performance of hard disk drives is often between 150-200MB/s. As such, a RAID configuration may be a cost effective alternative to a single solid state drive for sequential read / write access.

The capacity of enterprise hard disk drives (4TB) is often greater than that of enterprise solid state drives.

Data Structure
Hash Table

JBoss Data Grid is an in-memory data grid with the data stored in a hash table. However, JBoss Data Grid supports persistence via write-behind or write-through. For all intents and purposes (e.g. map / reduce), all of the data should fit in memory.

Access

  • Random Reads, Random Writes

Riak is a key / value store. If persistence has been configured with Bitcast, the data is stored in a log structured hash table. An in-memory hash table contains the key / value pointers. The value is a pointer to the data. As such, all of the key / value pointers must fit in memory. The data is persisted via append only log files.

Access

  • Complex Index in Memory
  • Random Reads, Sequential Writes

Point queries perform well in hash tables. Range queries do not. Though there is always map / reduce.

B-Tree
MongoDB is a document database with the data stored in a B-Tree. The data is persisted via memory mapped files.

Access

  • Partial Index (Internal Nodes) in Memory
  • Random Reads, Sequential Reads, Random Writes

CouchDB is a document database with the data stored in a B+Tree. The data is persisted via append only log files.

Access

  • Partial Index in Memory
  • Random Reads, Sequential Reads, Sequential Writes

In a B+ Tree, the data is only stored in the leaf nodes. In a B-Tree, the data is stored in both the internal nodes and the leaf nodes. The advantage of a B+ Tree is that the leaf nodes are linked. As a result, range queries perform better with a B+ Tree. However, point queries perform better with a B-Tree.

CouchDB has implemented an append only B+ Tree. An alternative is the copy-on-write (CoW) B+ Tree. A write optimization for a B-Tree is buffering. First, the data written to an internal buffer in an internal node. Second, the buffer is flushed to a leaf node. As a result, random writes are turned in to sequential writes. The cost of random writes is thus amortized.  However, I am not aware of any open source data stores that have implemented a CoW B+ Tree or have implemented buffering with a B-Tree.

Range queries perform well with a B/B+ Tree. Point queries, not as well as hash tables.

Log Structured Merge Tree
Apache HBase and Apache Cassandra are both column oriented data stores, and they have both store data in an LSM-Tree. Apache HBase has implemented a cache oblivious lookahead array (COLA). Apache Cassandra has implemented a sorted array merge tree (SAMT).

In both implementations, a write is first written to a write-ahead log. Next, it is written to a memtable. A memtable is an in-memory sorted string table (SSTable). Later, the memtable is flushed and persisted as an SSTable. As result, random writes are turned in to sequential writes. However, a point query with an LSM-Tree may require multiple random reads.

Apache HBase implemented a single-level index with HFile version 1. However, because every index was cached, it resulted in high memory usage.

Apache HBase implemented a multi-level index a la a B+ Tree with HFile (SSTable) version 2. The SSTable contains a root index, a root index with leaf indexes, or a root index with an intermediate index and leaf indexes. The root index is stored in memory. The intermediate and leaf indexes may be stored in the block cache. In addition, the SSTable contains a compound (block level) bloom filter. The bloom filter is used to determine if the data is not in the data block.

Recommendation / Access

  • Partial Index / Bloom Filter in Memory
  • Random Reads, Sequential Reads, Sequential Writes

A read optimization for an LSM-Tree is fractional cascading. The idea is that each level contains both data and pointers to data in the next level. However, I am not aware of any open source data stores that have implemented fractional cascading.

I like the idea of a hybrid / tiered storage solution for an LSM-Tree implementation with the first level in memory, second level on solid state drives, and third level on hard disk drives. I've seen this solution described in academia, but I am not aware of any open source implementations.

Conclusion
I find it interesting that key / value stores often store data in a hash table, that document stores often store data in a B+/B-Tree, and that column oriented stores often store data in an LSM-Tree. Perhaps it is because key / value stores focus on the performance of point queries, document stores support secondary indexes (MongoDB) / views  (CouchDB), and column oriented stores support range queries. Perhaps it because document stores were not created with distribution (shards / partitions) in mind and thus assume that the complete index can not be stored in memory.

Notes
I found this paper to be very helpful in examining data structures as it covers most of the ones highlighted in this post:

Efficient, Scalable, and Versatile Application and System Transaction Management for Direct Storage Layers (link)

Read the original blog entry...

More Stories By Daniel Thompson

I curate the content on this page, but the credit goes to my talented colleagues for the posts that you see here. Much of what you read on this page is the work of friends at How to JBoss, and I encourage you to drop by the site at http://www.howtojboss.com for some of the best JBoss technical and non-technical content for developers, architects and technology executives on the Web.

Latest Stories from Big Data Journal
Having just joined a large technology company with 20 years of history, it would be suicidal to believe that I can immediately move the entire organization to the DevOps mindset and model. For those not familiar with the term, “Eventual Consistency” is a model used in distributed computing to ensure high availability. In this context, it’s a model for replicating best practices and automation across IT teams and business units. The logical place to start with automation is the on-boarding of a ...
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher....
The Open Group and BriefingsDirect recently assembled a distinguished panel at The Open Group Boston Conference 2014 to explore the practical implications and limits of the Internet of Things. This so-called Internet of Things means more data, more cloud connectivity and management, and an additional tier of “things” that are going to be part of the mobile edge -- and extending that mobile edge ever deeper into even our own bodies. Yet the Internet of Things is more than the “things” – it me...
The emergence of cloud computing and Big Data warrants a greater role for the PMO to successfully manage enterprise transformation driven by these powerful trends. As the adoption of cloud-based services continues to grow, a governance model is needed to orchestrate enterprise cloud implementations and harness the power of Big Data analytics. In his session at 15th Cloud Expo, Mahesh Singh, President of BigData, Inc., to discuss how the Enterprise PMO takes center stage not only in developing th...
General Electric (GE) has been a household name for more than a century, thanks in large part to its role in making households easier to run. Starting with the light bulb invented by its founder, Thomas Edison, GE has been selling devices (“things”) to consumers throughout its 122-year history. Last week, GE announced that it is officially leaving that job to others. While the lighting division will stay, GE will now turn its attention to selling industrial machinery and analytics as a service t...
Come learn about what you need to consider when moving your data to the cloud. In her session at 15th Cloud Expo, Skyla Loomis, a Program Director of Cloudant Development at Cloudant, will discuss the security, performance, and operational implications of keeping your data on premise, moving it to the cloud, or taking a hybrid approach. She will use real customer examples to illustrate the tradeoffs, key decision points, and how to be successful with a cloud or hybrid cloud solution.
For the last hundred years, the desk phone has been a staple of every business. The landline has been a lifeline to customers and colleagues as the primary means of communication – even as email threatened to render the telephone obsolete. For some purposes, like conference calling, there was simply no substitute. That is, until a few years ago. With all due respect and apologies to Mr. Alexander Graham Bell, the desk phone is becoming just one solution, out of many devices, used for the modern...
Software is eating the world. Companies that were not previously in the technology space now find themselves competing with Google and Amazon on speed of innovation. As the innovation cycle accelerates, companies must embrace rapid and constant change to both applications and their infrastructure, and find a way to deliver speed and agility of development without sacrificing reliability or efficiency of operations. In her keynote DevOps Summit, Victoria Livschitz, CEO of Qubell, will discuss ho...
In today's application economy, enterprise organizations realize that it's their applications that are the heart and soul of their business. If their application users have a bad experience, their revenue and reputation are at stake. In his session at 15th Cloud Expo, Anand Akela, Senior Director of Product Marketing for Application Performance Management at CA Technologies, will discuss how a user-centric Application Performance Management solution can help inspire your users with every appli...