Welcome!

@DXWorldExpo Authors: Yeshim Deniz, Zakia Bouachraoui, Liz McMillan, Pat Romanski, Elizabeth White

Related Topics: Containers Expo Blog, Java IoT, Microservices Expo, @CloudExpo, @DXWorldExpo, SDN Journal

Containers Expo Blog: Article

The Big Data Bottleneck: Uploading to the Cloud

If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

The problem with Big Data is that, well, Big Data are big. Really big. We’re talking terabytes. Petabytes. Zettabytes. Whatever’s-even-bigger-bytes. And of course, we want to solve all our Big Data challenges in the Cloud. If only we could get those gigando-bytes into the Cloud in the first place. And there’s the rub.

Uploading Big Data from our internal network to the Cloud via an Internet connection is as practical as filling a swimming pool through a drinking straw. It doesn’t matter how sophisticated our Big Data analytics, how super-duper our Hadoopers. If we can’t efficiently get our data where we need them when we need them, we’re stuck.

Optimize the Pipe
Fortunately, the Big Data upload problem isn’t new. In fact, it’s been around for years, under the moniker Wide Area Network (WAN) Optimization. Fortunate for us because vendors have been working on WAN Optimization techniques for a while now, and now several of them are repurposing those techniques to help with the Cloud.

For example, Aryaka has been peddling WAN Optimization appliances for several years. Put one appliance in your local data center, a second in the remote data center, and proprietary technology moves data from one to the other at a rapid clip. Now that the Cloud has turned their world upside down, they are providing a distributed service at the remote end, a “mesh of network connections” better suited to the Cloud. In other words, Aryaka is building an offering similar to Content Delivery Networks (CDNs) like Akamai.

RainStor, in contrast, focuses primarily on a proprietary compression algorithm that promises to squeeze data into one fortieth their original size. Furthermore, RainStor’s compressed data remain directly accessible using standard SQL or even MapReduce on Hadoop with no storage-eating, time-consuming reinflation.

Then there’s Aspera, who’s found a sophisticated way around the limitations of the Transmission Control Protocol (TCP) itself. After all, TCP’s tiny packets and penchant for resending them are a large part of the reason uploading Big Data over the Internet runs like such a dog in the first place. To teach this dog a new trick or two, Aspera transfers use one TCP port for session initialization and control, and one User Datagram Protocol (UDP) port for data transfer.

UDP is an older, fire-and-forget protocol that doesn’t perform the retries that provide TCP’s reliability, but by combining the two protocols, FASP achieves nearly 100% error-free data throughput. In fact, FASP reaches the maximum transfer speed possible given the hardware on which you deploy it, and maintains maximum available throughput independent of network delay and packet loss. FASP also aggregates hundreds of concurrent transfers on commodity hardware, addressing the drinking straw problem in part by supporting hundreds of straws at once.

CloudOpt is also a player worth mentioning. Their JetStream technology takes a soup-to-nuts approach that combines compression and transmission protocol optimization with advanced data deduplication, SSL acceleration, and an ingenious approach to getting the most performance out of cached data. Or Attunity Cloudbeam, that touts file to Cloud upload, file to Cloud replication, and Cloud to Cloud replication. Attunity’s Managed File Transfer (MFT) incorporates a secure DMZ architecture, security policy enforcement, guaranteed and accelerated transfers, process automation, and audit capabilities across each stage of the file transfer process.

Finally, there’s Amazon Web Services (AWS) itself. Yes, most if not all of the vendors discussed above can firehose data into AWS’s various storage services. But AWS also offers a simple, if decidedly low-tech approach as well: AWS Import/Export. Simply ship your big hard drives to Amazon. They’ll hook them up, copy the data to your Simple Storage Service (S3) or other storage service, and ship the drive back when you’re done. This SneakerNet or “Forklifting” approach, believe it or not, can even be faster than some of the over-the-Internet optimizations for certain Big Data sets, even considering the time it takes to FedEx AWS your drives.

On Beyond Drinking Straws
The problem with most of the approaches above (excepting only Aspera and Amazon’s forklift) is that they make the drinking straw we’re using to fill that swimming pool better, faster, and bigger – but we’re still filling that damn pool with a straw. So what’s better than a straw? How about many straws? If any optimization technique improves a single connection to the Internet, then it stands to reason that establishing many connections to your Cloud provider in parallel would multiply your upload speed dramatically.

Fair enough, but let’s think out of the box here. A fundamental Big Data best practice is to bring your analytics to your data. The reasoning is that it’s hard to move your data but easy to move your software, so once your data are in the Cloud, you should also run your analytics there.

But this argument also works in reverse. If your data aren’t in the Cloud, then it may not make sense to move them to the Cloud simply to run your software there. Instead, bring your software to your data, even if they’re on premise.

Perish the thought, you say! We’re sold on Big Data in the Cloud. We’ve crunched the numbers and we know it’s going to save us money, provide more capabilities, and facilitate sharing information across our organization and the world. Fair enough. Here’s another twist for you.

Why are your Big Data sets outside the Cloud to begin with? Sure, you’re stuck with existing, legacy data sets wherever they happen to be today. But as a rule, those don’t constitute Big Data, or will cease to qualify as being large enough to warrant the Big Data label relatively soon. By definition, Big Data sets keep expanding exponentially, which means that you keep creating them with generations of newfangled tools.

In fact, there are already multitudinous sources for raw Big Data, as varied as the Big Data challenges organizations struggle with today. But many such sources are already in the Cloud, or could be moved to the Cloud simply. For example, clickthrough data from your Web sites. Such data come from your Web servers, which should be in the Cloud anyway. If your Big Data come from Web Servers scattered here and there in the Cloud, then moving the clickthrough data to a Big Data repository for processing can be handled in the same Cloud. No need for uploading.

What about data sources that aren’t already in the Cloud? Many Big Data streams come from instrumentation or sensors of some sort, from seismographs underground to EKGs in hospitals to UPC scanners in supermarkets. There’s no reason why such instrumentation shouldn’t pour their raw data feeds directly to the Cloud. What good is storing a week’s worth of supermarket purchasing data on premise anyway? You’ll want to store, process, manage, and analyze those data in the Cloud, so the sooner you get it there, the better.

The ZapThink Take
The only reason we have to worry about uploading Big Data to the Cloud in the first place is because our Big Data aren’t already in the Cloud. And broadly speaking, the reason they’re not already in the Cloud is because the Cloud isn’t everywhere. Instead, we think of the Cloud as being locked away in data centers, those alien, air conditioned facilities packed full of racks of high tech equipment.

That may be true today, but as ZapThink has discussed before, there’s nothing in the definition of Cloud Computing that requires Cloud resources to live in data centers. You might have a bit of the Cloud in your pocket, or on your laptop, in your car, or in your refrigerator. For now, this vision of the Internet of Things meeting the Cloud is mostly the stuff of science fiction. We’re only now figuring out what it means to have a ubiquitous global network of sensors, from the aforementioned EKGs and UPC scanners to traffic cameras to home thermostats. But the writing is on the wall. Just as we now don’t think twice about carrying supercomputers in our pockets, it’s only a matter of time until the Cloud itself is fully distributed and ubiquitous. When that happens, the question of moving Big Data to the Cloud will be moot. They will already be there.

Are you one of the vendors mentioned in this article and have a correction, or a vendor who should have been mentioned but wasn’t? Please feel free to comment here.

Image Source: US Navy

More Stories By Jason Bloomberg

Jason Bloomberg is a leading IT industry analyst, Forbes contributor, keynote speaker, and globally recognized expert on multiple disruptive trends in enterprise technology and digital transformation. He is ranked #5 on Onalytica’s list of top Digital Transformation influencers for 2018 and #15 on Jax’s list of top DevOps influencers for 2017, the only person to appear on both lists.

As founder and president of Agile Digital Transformation analyst firm Intellyx, he advises, writes, and speaks on a diverse set of topics, including digital transformation, artificial intelligence, cloud computing, devops, big data/analytics, cybersecurity, blockchain/bitcoin/cryptocurrency, no-code/low-code platforms and tools, organizational transformation, internet of things, enterprise architecture, SD-WAN/SDX, mainframes, hybrid IT, and legacy transformation, among other topics.

Mr. Bloomberg’s articles in Forbes are often viewed by more than 100,000 readers. During his career, he has published over 1,200 articles (over 200 for Forbes alone), spoken at over 400 conferences and webinars, and he has been quoted in the press and blogosphere over 2,000 times.

Mr. Bloomberg is the author or coauthor of four books: The Agile Architecture Revolution (Wiley, 2013), Service Orient or Be Doomed! How Service Orientation Will Change Your Business (Wiley, 2006), XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996). His next book, Agile Digital Transformation, is due within the next year.

At SOA-focused industry analyst firm ZapThink from 2001 to 2013, Mr. Bloomberg created and delivered the Licensed ZapThink Architect (LZA) Service-Oriented Architecture (SOA) course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, which was acquired by Dovel Technologies in 2011.

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting), and several software and web development positions.

DXWorldEXPO Digital Transformation Stories
JETRO showcased Japan Digital Transformation Pavilion at SYS-CON's 21st International Cloud Expo® at the Santa Clara Convention Center in Santa Clara, CA. The Japan External Trade Organization (JETRO) is a non-profit organization that provides business support services to companies expanding to Japan. With the support of JETRO's dedicated staff, clients can incorporate their business; receive visa, immigration, and HR support; find dedicated office space; identify local government subsidies; get...
Digital Transformation is well underway with many applications already on the cloud utilizing agile and devops methodologies. Unfortunately, application security has been an afterthought and data breaches have become a daily occurrence. Security is not one individual or one's team responsibility. Raphael Reich will introduce you to DevSecOps concepts and outline how to seamlessly interweave security principles across your software development lifecycle and application lifecycle management. With ...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science" is responsible for guiding the technology strategy within Hitachi Vantara for IoT and Analytics. Bill brings a balanced business-technology approach that focuses on business outcomes to drive data, analytics and technology decisions that underpin an organization's digital transformation strategy.
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
The challenges of aggregating data from consumer-oriented devices, such as wearable technologies and smart thermostats, are fairly well-understood. However, there are a new set of challenges for IoT devices that generate megabytes or gigabytes of data per second. Certainly, the infrastructure will have to change, as those volumes of data will likely overwhelm the available bandwidth for aggregating the data into a central repository. Ochandarena discusses a whole new way to think about your next...
Behera Rasananda is a technologist, a leader, a key note speaker has more than 20 years experience in across Government, Financial, Heath Care and Insurance Verticals. Mr. Behera has vast experience in Enterprise Cloud and Big Data solutions and Enterprise Architecture. Currently he works closely for Government Solutions on Enterprise Cloud for Federal Government Agency. Scientist Behera managed and partner with clients to make complete end to end solution and Migration to cloud both private sec...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Cloud applications are seeing a deluge of requests to support the exploding advanced analytics market. “Open analytics” is the emerging strategy to deliver that data through an open data access layer, in the cloud, to be directly consumed by external analytics tools and popular programming languages. An increasing number of data engineers and data scientists use a variety of platforms and advanced analytics languages such as SAS, R, Python and Java, as well as frameworks such as Hadoop and Spark...
The technologies behind big data and cloud computing are converging quickly, offering businesses new capabilities for fast, easy, wide-ranging access to data. However, to capitalize on the cost-efficiencies and time-to-value opportunities of analytics in the cloud, big data and cloud technologies must be integrated and managed properly. Pythian's Director of Big Data and Data Science, Danil Zburivsky will explore: The main technology components and best practices being deployed to take advantage...