Welcome!

Big Data Journal Authors: Roger Strukhoff, Carmen Gonzalez, Pat Romanski, Elizabeth White, Liz McMillan

Blog Feed Post

Big Data accessiblity for SEC reporting? Not yet. Columbia report explains why.

By

[This post by Hudson Hollister is cross-posted on the Data Transparency Coalition's blog.]

Last Tuesday Columbia Business School’s Center for Excellence in Accounting and Security Analysis released a definitive report evaluating the implementation of a structured data format for the financial statements that public companies file with the U.S. Securities and Exchange Commission. Over a year in the making and based on extensive discussions and surveys with corporate filers, investors, data and filing vendors, regulators, and others, the survey illuminates the promise of structured data to better serve investors, improve the enforcement of securities laws, and make the U.S. capital market more efficient. It also reveals serious flaws in the SEC’s approach thus far – flaws which have prevented the promise from being realized.

Data Transparency CoalitionThe Columbia report is a call to action by both the SEC and Congress. The Data Transparency Coalition is going to pursue that action in 2013.

In 2009, the SEC adopted a requirement for public companies to file each financial statement in the eXtensible Business Reporting Language (XBRL) alongside the regular plain-text version. The requirement was slowly phased in over four years, starting with the largest companies and eventually covering all public companies. The XBRL format imposes a data structure on the financial statements and their notes and footnotes by assigning electronic tags to each item and defining how the items relate to one another.

Judging by potential impact, this is the most ambitious data transparency program ever undertaken by the U.S. government. The XBRL reporting requirement transformed all of the public financial statements in the world’s largest capital market from cumbersome text, which must be manually transcribed to allow quantitative analysis by investors and regulators, into an open, standardized, machine-readable format.

In theory, replacing unstructured text with structured data should, by now, have triggered revolutions and disruptions all over the financial industry. The SEC’s XBRL reporting requirement should, by now, have opened up corporate financial statements in the United States to Big Data platforms and applications.

  • Investors and analysts serving them should, by now, have started using powerful new software tools to compare and analyze the newly-structured financial statements – and to mash financial figures together with other data sources. They should be making better decisions, evaluating a broader universe of companies, and democratizing the financial industry.
  • Aggregators like Bloomberg and Google Finance should, by now, have started saving money and improving accuracy by ingesting corporate financial data directly from the SEC’s structured XBRL feed instead of manually entering the numbers into their own systems (or paying someone else to do that).
  • The SEC should, by now, have incorporated structured corporate financial data into its own review processes, instead of relying on manual reviews of the financial statements in Forms 10-K and 10-Q.
  • Other federal agencies should, by now, have started automatically checking the financial performance of companies as reported to the SEC before bestowing contracts or loan guarantees (among many other possible uses).

None of these things is happening on a large scale – yet. The Columbia report explains why. The Columbia report also hints at what the SEC and Congress can, and should, do about it.

 

What does the Columbia report tell us?

  • Investors are demanding structured data – not unstructured text – to track companies’ financial performance. The Columbia authors “have no doubt that [investors'] analysis of companies will continue to be based off increasing amounts of data that are structured and delivered to users in an interactive [structured] format” (p. i). “[T]here is clear demand for timely, structured, machine-readable data including information in financial reports, and … this need can be met via XBRL as long as the XBRL-tagged data can reduce the total processing costs of acquiring and proofing the data, and that the data are easily integrated (mapped) into current processes” (p. 20).
  • Nonetheless, most investors are not making any use of the structured-data financial statements that public companies are now submitting to the SEC. Fewer than ten percent of the Columbia study’s non-scientific sample of investors said they were using XBRL data downloaded directly from the SEC or from XBRL US (p. 61). Instead, most investors were getting their corporate financial information from aggregators like Bloomberg and Google Finance – some free, some not. Moreover, aggregators told Columbia that they were not using XBRL data either. Aggregators were mostly still electronically scraping the old-fashioned plain-text financial statements (which are still being filed alongside the new structured-data financial statements) and manually verifying the numbers – or paying others to do that “labor-intensive” work for them. (pp 26-27.)  
  • Two problems explain why most investors have not begun to use structured-data financial statements. First, they don’t yet trust the data. “XBRL-tagged SEC data are generally perceived by investors as unreliable,” say the Columbia authors, both because of errors in numbers and categorization and because of companies’ use of unnecessary extensions, hindering comparability (p. 28). Columbia’s review of the quality of structured-data financial statements filed with the SEC (conducted two years ago) revealed that fully 73% of filings had data quality errors (p. 32). Moreover, investors reported “a large number of seemingly unnecessary company-specific tags” (p. 21). Investors surveyed by Columbia were “especially hesitant about using the data until they are comfortable that the XBRL data matches the [plain-text] data in SEC filings” (p. 21). Aggregators, too, were holding off until accuracy and comparability improved.
  • Second, investors don’t yet have a wide range of software tools to compare and analyze structured-data financial statements. End users are also looking for easy-to-use XBRL consumption and analysis tools that do not require programming or query language knowledge. In general, these users are not willing or able to incur the significant disruption to their workflow that they perceived would be required to incorporate XBRL data without state-of-the-art consumption and analytics tools.” (p. 24)
  • If these two problems were fixed, investors could make enthusiastic and productive use of structured-data financial statements. “[T]he potential for interactive data to democratize financial information and transform transparency remains stronger than ever, and many participants, including most investors and analysts, wish that the data were useful today,” say the Columbia authors (p. 4). For instance, “virtually all investors” frequently use information that is available only in the footnotes of corporate financial statements to make their decisions – information that is now submitted and published in XBRL as part of companies’ structured-data filings (p. 48.) “With respect to the detailed-tagged footnote data, in particular, several investors and analysts have communicated to us that they view XBRL data as potentially an excellent solution to manually collecting the data they need” (p. 31).
  • Even if most investors aren’t directly using structured-data financial statements, there will be indirect benefits to investors and the markets if the SEC starts using such data for its own reviews. The study reported that “the SEC has begun to review the data to identify filer-wide, as well as individual company filing and financial reporting issues. XBRL data could significantly enhance the efficiency of the Division of Corporate Finance’s review of filings and facilitate a “red-flag” ex-ante approach to regulatory oversight.” (p. 25) “Representatives from the FASB and the SEC have both stated on the record that, in their opinions, the amount of time that it takes them to conduct their respective analyses has been reduced significantly by their use of the XBRL-tagged data (p. 26).” Even imperfectly implemented, the XBRL mandate could indirectly benefit investors and the markets by improving the SEC’s review and enforcement processes.

The SEC’s XBRL reporting requirement could deliver transformative data transparency. But it has not. So far its impact has been incremental, not transformative.

To be sure, the problems identified by the Columbia study are problems of execution, not shortcomings of XBRL itself or of the concept of structured data. Investors and the analysts serving them “would like to have the U.S. regulatory filings tagged in a structured (e.g., XBRL) format that would meet their information requirements” (p. 5). For the SEC to eliminate the XBRL reporting requirement entirely – as some filers seem to hope that it will – would be a backward move and a tragic mistake.

Nevertheless, structured data for financial statements is, without doubt, “at a critical stage in its development. Without a serious reconsideration of the technology, coupled with a focus on facile usability of the data, and value-add consumption tools, it will at best remain of marginal benefit to the target audience of both its early proponents and the SEC’s mandate—investors and analysts” (p. ii). 

 

How can these problems be fixed?

How can the SEC fix these problems of reliability and analysis and deliver transformative transparency? The Columbia report suggests four answers:

  • First, insist on accuracy and quality! The SEC does not require companies to amend their filings to correct tagging errors and unnecessary extensions. The Columbia report suggests strongly that it should. The Columbia authors fault “the reticence (or inability) of regulators and filers to ensure that the interactive filings data are accurate and correctly-tagged from day one of their release to the public and forward (or, to communicate to the market for this information that they were not insisting on this and why)” (p. 37). It is “critical” to reduce errors and extensions, either through “greater regulatory oversight and potentially requiring the audit of this data” or through third-party quality checks (pp. 42-43). The SEC’s own interests should motivate it to insist on accuracy once it becomes “serious about using the data in its Corporate Finance function and even for enforcement, as it should” (p. 43) (emphasis added). The need to improve quality might require the SEC and the Financial Accounting Standards Board to consider simplifying the underlying XBRL taxonomy (pp. i, 14, 43).
  • Second, communicate that structured data is not a supplemental feature of a regulatory filing. Rather, it is the filing! The Columbia authors explain that “the reliability of the data has been compromised by the way filers have approached their XBRL filings … [perceiving] XBRL-tagging [as] an additional task in the financial reporting documentation process rather than as a part of the internal data systems” (p. 29). The SEC framed its XBRL reporting rule as a requirement to “create an XBRL-tagged reproduction of the paper or HTML presentations of their filings” (p. 37), rather than “making individual data points available for the end user to utilize or present as they required” (p. 39). Since filers think structured-data financial statements are “incremental to their existing [plain-text] filings, they do not perceive any user need” (p. 35) – and take few pains to ensure that investors using their structured data filings get an accurate picture of their finances. “We believe this presentation-centric step hindered or diverted what should have been an important evolution from a paper presentation-centric view of financial reporting information to a far more transparent and effective data-centric one” (p. 37). One way to correct this situation would be to move to a data format that is both human-readable and machine-readable, combining the plain text and structured-data tags in a single filing. Inline XBRL would do exactly that, and in fact the SEC is considering adopting this format (n. 48).
  • Third, encourage the development of software tools that make structured-data financial statements come alive! This is something of a chicken-and-egg problem. More software tools will be created as investors demand them. But effective, lightweight, cheap XBRL analysis tools are already on offer – notably Calcbench.
  • Fourth, expand the mandate! The Columbia report is clear that investors want more regulatory information tagged and structured, not less (p. 28):

i. The data that are required by the SEC to be XBRL-tagged are all relevant in varying degrees to some subset of the investor/analyst population, but more data are required than currently mandated—e.g., earnings release, MD&A, etc.

ii. If anything, users require more, not less, types of machine-readable data to be made available, because a significant amount of information they require are not from SEC filings or financial statements.

iii. The primary focus on data in the SEC filings of annual and quarterly financial statements seriously limits the perceived ongoing usefulness and relevance of the data.

Over and over, the report points out that the SEC’s current mandate for structured data is limited to the financial statements and accompanying notes (pp. 14, 18, 21, 24, 34-35, 42). Everything else that companies must file with the SEC under the U.S. securities laws is still submitted only in plain text. These other materials – earnings releases, corporate actions, executive compensation disclosures, proxy statements, officer and director lists, management discussions – could be valuable if tagged. But they are not. Investors “view access to the full array of footnote, management discussion and analysis (MD&A), and earnings release numerical data as the main reason to consider adapting their workflow to incorporate XBRL-tagged filings” (p. 21). But this demand is “pent-up” because such items are not – yet – included in the SEC’s mandate (p. 24).

What lies ahead? 

The path forward for the SEC is clear. First, the agency must take the basic steps that are necessary to improve the quality of structured-data financial statements. Second, to tap the full potential of structured data, the agency must first stop requiring the simultaneous submission of plain-text and structured-data versions of financial statements. It should instead collect single structured-data version. That would encourage companies, analysts, and the SEC’s own staff to focus on data, not on documents. Second, data transparency requires full standardization as well as publication. Third, the agency must expand its structured-data mandate by phasing in more disclosures: earnings releases, management’s discussion and analysis, executive compensation, proxy disclosures, ownership structure, board and officer lists, insider trading reports – and, eventually, everything.

If the SEC is unwilling to act, Congress could insist. Our Coalition will call for the reintroduction, this year, of the Financial Industry Transparency Act. That bipartisan proposal, first introduced in 2010 by Reps. Darrell Issa (R-CA), Edolphus Towns (D-NY), and Spencer Bachus (R-AL), would require these steps as a matter of law.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley, former CTO of the Defense Intelligence Agency (DIA), is Founder and CTO of Crucial Point LLC, a technology research and advisory firm providing fact based technology reviews in support of venture capital, private equity and emerging technology firms. He has extensive industry experience in intelligence and security and was awarded an intelligence community meritorious achievement award by AFCEA in 2008, and has also been recognized as an Infoworld Top 25 CTO and as one of the most fascinating communicators in Government IT by GovFresh.

@BigDataExpo Stories
Cloudwick, the leading big data DevOps service and solution provider to the Fortune 1000, announced Big Loop, its multi-vendor operations platform. Cloudwick Big Loop creates greater collaboration between Fortune 1000 IT staff, developers and their database management systems as well as big data vendors. This allows customers to comprehensively manage and oversee their entire infrastructure, which leads to more successful production cluster operations, and scale-out. Cloudwick Big Loop supports ...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation...
SimpleECM is the only platform to offer a powerful combination of enterprise content management (ECM) services, capture solutions, and third-party business services providing simplified integrations and workflow development for solution providers. SimpleECM is opening the market to businesses of all sizes by reinventing the delivery of ECM services. Our APIs make the development of ECM services simple with the use of familiar technologies for a frictionless integration directly into web applicat...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, da...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water,...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
The information technology sphere undergoes what we like to call a paradigm shift, sea change or plain old ‘upheaval’ roughly every five years or so. Don’t ask anybody why this half decade cyclicality exists; it just has to be so. Accept that reinvention happens constantly and that major seismic shifts are tangibly felt by us human beings roughly every 1826.21 days… and we can move on.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, B...
SYS-CON Events announced today that Objectivity, Inc., the leader in real-time, complex Big Data solutions, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Objectivity, Inc. is the Enterprise Database leader of real-time, complex Big Data solutions. Our leading edge technologies – InfiniteGraph®, The Distributed Graph Database™ and Objectivity/DB®, a distributed and scalable object ma...
In their session at DevOps Summit, Stan Klimoff, CTO of Qubell, and Mike Becker, Senior Data Engineer for RingCentral, will share the lessons learned from implementing CI/CD pipeline on AWS for a customer analytics project powered by Cloudera Hadoop, HP Vertica and Tableau. Stan Klimoff is CTO of Qubell, the enterprise DevOps platform. Stan has more than a decade of experience building distributed systems for companies such as eBay, Cisco and Seagate. Qubell is helping enterprises to become mor...
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo, moderated by Ashar Baig, Research ...
Big Data means many things to many people. From November 4-6 at the Santa Clara Convention Center, thousands of people will gather at Big Data Expo to discuss what it means to them, how they are implementing it, and how Big Data plays an integral role in the maturing cloud computing world and emerging Internet of Things. Attend Big Data Expo and make your contribution. Register for Big Data Expo "FREE" with Discount Code "BigDataOCTOBER" by October 31
The evolution of the database is under constant upheaval, discussion, debate and (if you will excuse the expression) 'analysis.' This basic truth is now more relevant, pertinent and pressing than ever due to the prevalence of Big Data (and the need to impose analytics of insight upon it) driven by social, mobile, cloud and of course the Internet of (Every) Things. Today then, as a staple of our IT infrastructure, databases have been around for over 50 years now with first references of the ter...
SYS-CON Events announced today that Cloudian, Inc., the leading provider of hybrid cloud storage solutions, has been named “Bronze Sponsor” of SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Cloudian is a Foster City, Calif.-based software company specializing in cloud storage. Cloudian HyperStore® is an S3-compatible cloud object storage platform that enables service providers and enterprises to bui...
What process has your provider undertaken to ensure that the cloud tenant will receive predictable performance and service? What was involved in the planning? Who owns and operates the data center? What technology is being used? How is it being supported? In his session at 14th Cloud Expo, Dave Weisbrot, Cloud Business Manager for QTS, will provide the attendees a look into what it takes to stand up and stand behind a highly available certified cloud IaaS.
Data efficiency – the combination of technologies including data deduplication, compression, zero elimination and thin provisioning – transformed the backup storage appliance market in well under a decade. Why has it taken so long for the same changes to occur in the primary storage appliance market? The answer can be found by looking back at the early evolution of the backup appliance market, and understanding why EMC’s Data Domain continues to hold a commanding lead in that market today. The ...
Target. Home Depot. Community Health Systems. Nieman Marcus. Their names have been all in the news over the past year, though probably not in a way they would like. All have had very public data breaches affecting anywhere from 350,000 (Nieman Marcus) to 4.5 million (Community Health Systems) customers. Add the recent high-profile celebrity nude photo hacking scandal and cloud security has become the trending topic in all the news and social media. Some of the discussions reminded me of a line f...