Welcome!

Big Data Journal Authors: Trevor Parsons, Carmen Gonzalez, Jason Bloomberg, Yeshim Deniz, Pat Romanski

Related Topics: Big Data Journal, SOA & WOA, Virtualization, AJAX & REA, Cloud Expo, SDN Journal

Big Data Journal: Article

From Metrics to Success

Ford scours for more big data to bolster quality, improve manufacturing, streamline processes

Ford has exploited the strengths of big data analytics by directing them internally to improve business results. In doing so, they scour the metrics from the company’s best processes across myriad manufacturing efforts and through detailed outputs from in-use automobiles -- all to improve and help transform their business.

So explains Michael Cavaretta, PhD, Technical Leader of Predictive Analytics for Ford Research and Advanced Engineering in Dearborn, Michigan. Cavaretta is one of a group of experts assembled this week for The Open Group Conference in Newport Beach, California.

Cavaretta has led multiple data-analytic projects at Ford to break down silos inside the company to best define Ford’s most fruitful data sets. Ford has successfully aggregated customer feedback, and extracted all the internal data to predict how best new features in technologies will improve their cars.

As a contributor to the The Open Group conference and its focus on "Big Data -- The Transformation We Need to Embrace Today," Cavaretta explains how big data is fostering business transformation by allowing deeper insights into more types of data efficiently, and thereby improving processes, quality control, and customer satisfaction.

The interview was moderated by Dana Gardner, Principal Analyst at Interarbor Solutions. [Disclosure: The Open Group is a sponsor of BriefingsDirect podcasts.]

Here are some excerpts:

Gardner: What's different now in being able to get at this data and do this type of analysis from five years ago?

Cavaretta: The biggest difference has to do with the cheap availability of storage and processing power, where a few years ago people were very much concentrated on filtering down the datasets that were being stored for long-term analysis. There has been a big sea change with the idea that we should just store as much as we can and take advantage of that storage to improve business processes.

Gardner: How did we get here? What's the process behind the benefits?

Sea change in attitude

Cavaretta: The process behind the benefits has to do with a sea change in the attitude of organizations, particularly IT within large enterprises. There's this idea that you don't need to spend so much time figuring out what data you want to store and worry about the cost associated with it, and more about data as an asset. There is value in being able to store it, and being able to go back and extract different insights from it. This really comes from this really cheap storage, access to parallel processing machines, and great software.

Cavaretta

I like to talk to people about the possibility that big data provides and I always tell them that I have yet to have a circumstance where somebody is giving me too much data. You can pull in all this information and then answer a variety of questions, because you don't have to worry that something has been thrown out. You have everything.

You may have 100 questions, and each one of the questions uses a very small portion of the data. Those questions may use different portions of the data, a very small piece, but they're all different. If you go in thinking, "We’re going to answer the top 20 questions and we’re just going to hold data for that," that leaves so much on the table, and you don't get any value out of it.

The process behind the benefits has to do with a sea change in the attitude of organizations, particularly IT within large enterprises.

We're a big believer in mash-ups and we really believe that there is a lot of value in being able to take even datasets that are not specifically big-data sizes yet, and then not go deep, not get more detailed information, but expand the breadth. So it's being able to augment it with other internal datasets, bridging across different business areas as well as augmenting it with external datasets.

A lot of times you can take something that is maybe a few hundred thousand records or a few million records, and then by the time you’re joining it, and appending different pieces of information onto it, you can get the big dataset sizes.

Gardner: You’re really looking primarily at internal data, while also availing yourself of what external data might be appropriate. Maybe you could describe a little bit about your organization, what you do, and why this internal focus is so important for you.

Internal consultants
Cavaretta: I'm part of a larger department that is housed over in the research and advanced-engineering area at Ford Motor Company, and we’re about 30 people. We work as internal consultants, kind of like Capgemini or Ernst & Young, but only within Ford Motor Company. We’re responsible for going out and looking for different opportunities from the business perspective to bring advanced technologies. So, we’ve been focused on the area of statistical modeling and machine learning for I’d say about 15 years or so.

And in this time, we’ve had a number of engagements where we’ve talked with different business customers, and people have said, "We'd really like to do this." Then, we'd look at the datasets that they have, and say, "Wouldn’t it be great if we would have had this. So now we have to wait six months or a year."

These new technologies are really changing the game from that perspective. We can turn on the complete fire-hose, and then say that we don't have to worry about that anymore. Everything is coming in. We can record it all. We don't have to worry about if the data doesn’t support this analysis, because it's all there. That's really a big benefit of big-data technologies.

The real value proposition definitely is changing as things are being pushed down in the company to lower-level analysts who are really interested in looking at things from a data-driven perspective. From when I first came in to now, the biggest change has been when Alan Mulally came into the company, and really pushed the idea of data-driven decisions.

The real value proposition definitely is changing as things are being pushed down in the company to lower-level analysts.

Before, we were getting a lot of interest from people who are really very focused on the data that they had internally. After that, they had a lot of questions from their management and from upper level directors and vice-president saying, "We’ve got all these data assets. We should be getting more out of them." This strategic perspective has really changed a lot of what we’ve done in the last few years.

Gardner: Are we getting to the point where this sort of Holy Grail notion of a total feedback loop across the lifecycle of a major product like an automobile is really within our grasp? Are we getting there, or is this still kind of theoretical. Can we pull it altogether and make it a science?

Cavaretta: The theory is there. The question has more to do with the actual implementation and the practicality of it. We still are talking a lot of data where even with new advanced technologies and techniques that’s a lot of data to store, it’s a lot of data to analyze, there’s a lot of data to make sure that we can mash-up appropriately.

And, while I think the potential is there and I think the theory is there. There is also a work in being able to get the data from multiple sources. So everything which you can get back from the vehicle, fantastic. Now if you marry that up with internal data, is it survey data, is it manufacturing data, is it quality data? What are the things do you want to go after first? We can’t do everything all at the same time.

Highest value

Our perspective has been let’s make sure that we identify the highest value, the greatest ROI areas, and then begin to take some of the major datasets that we have and then push them and get more detail. Mash them up appropriately and really prove up the value for the technologists.

Gardner: Clearly, there's a lot more to come in terms of where we can take this, but I suppose it's useful to have a historic perspective and context as well. I was thinking about some of the early quality gurus like Deming and some of the movement towards quality like Six Sigma. Does this fall within that same lineage? Are we talking about a continuum here over that last 50 or 60 years, or is this something different?

Cavaretta: That’s a really interesting question. From the perspective of analyzing data, using data appropriately, I think there is a really good long history, and Ford has been a big follower of Deming and Six Sigma for a number of years now.

The difference though, is this idea that you don't have to worry so much upfront about getting the data. If you're doing this right, you have the data right there, and this has some great advantages. You’ll have to wait until you get enough history to look for somebody’s patterns. Then again, it also has some disadvantage, which is you’ve got so much data that it’s easy to find things that could be spurious correlations or models that don’t make any sense.

The piece that is required is good domain knowledge, in particular when you are talking about making changes in the manufacturing plant. It's very appropriate to look at things and be able to talk with people who have 20 years of experience to say, "This is what we found in the data. Does this match what your intuition is?" Then, take that extra step.

Gardner: How has the notion of the Internet of things being brought to bear on your gathering of big data and applying it to the analytics in your organization?

Cavaretta: It is a huge area, and not only from the internal process perspective -- RFID tags within the manufacturing plans, as well as out on the plant floor, and then all of the information that’s being generated by the vehicle itself.

The Ford Energi generates about 25 gigabytes of data per hour. So you can imagine selling couple of million vehicles in the near future with that amount of data being generated. There are huge opportunities within that, and there are also some interesting opportunities having to do with opening up some of these systems for third-party developers. OpenXC is an initiative that we have going on to add at Research and Advanced Engineering.

Huge number of sensors

We have a lot of data coming from the vehicle. There’s huge number of sensors and processors that are being added to the vehicles. There's data being generated there, as well as communication between the vehicle and your cell phone and communication between vehicles.

There's a group over at Ann Arbor Michigan, the University of Michigan Transportation Research Institute (UMTRI), that’s investigating that, as well as communication between the vehicle and let’s say a home system. It lets the home know that you're on your way and it’s time to increase the temperature, if it’s winter outside, or cool it at the summer time.

The amount of data that’s been generated there is invaluable information and could be used for a lot of benefits, both from the corporate perspective, as well as just the very nature of the environment.

Gardner: Just to put a stake in the ground on this, how much data do cars typically generate? Do you have a sense of what now is the case, an average?

Cavaretta: The Energi, according to the latest information that I have, generates about 25 gigabytes per hour. Different vehicles are going to generate different amounts, depending on the number of sensors and processors on the vehicle. But the biggest key has to do with not necessarily where we are right now but where we will be in the near future.

With the amount of information that's being generated from the vehicles, a lot of it is just internal stuff. The question is how much information should be sent back for analysis and to find different patterns? That becomes really interesting as you look at external sensors, temperature, humidity. You can know when the windshield wipers go on, and then to be able to take that information, and mash that up with other external data sources too. It's a very interesting domain.

With the amount of information that's being generated from the vehicles, a lot of it is just internal stuff.

Gardner: What skills do you target for your group, and what ways do you think that you can improve on that?

Cavaretta: The skills that we have in our department, in particular on our team, are in the area of computer science, statistics, and some good old-fashioned engineering domain knowledge. We’ve really gone about this from a training perspective. Aside from a few key hires, it's really been an internally developed group.

Targeted training

The biggest advantage that we have is that we can go out and be very targeted with the amount of training that we have. There are such big tools out there, especially in the open-source realm, that we can spin things up with relatively low cost and low risk, and do a number of experiments in the area. That's really the way that we push the technologies forward.

Talking with The Open Group really gives me an opportunity to be able to bring people on board with the idea that you should be looking at a difference in mindset. It's not "Here’s a way that data is being generated, look, try and conceive of some questions that we can use, and we’ll store that too." Let's just take everything, we’ll worry about it later, and then we’ll find the value.

It's important to be thinking about data as an asset, rather than as a cost. You even have to spend some money, and it may be a little bit unsafe without really solid ROI at the beginning. Then, move towards pulling that information in, and being able to store it in a way that allows not just the high-level data scientist to get access to and provide value, but people who are interested in the data overall. Those are very important pieces.

The last one is how do you take a big-data project, how do you take something where you’re not storing in the traditional business intelligence (BI) framework that an enterprise can develop, and then connect that to the BI systems and look at providing value to those mash-ups. Those are really important areas that still need some work.

There are many companies, especially large enterprises, that are looking at their data assets and wondering what can they do to monetize this, not only to just pay for the efficiency improvement but as a new revenue stream.

Gardner: For those organizations that want to get started on this, how do you get started?

Understand that it maybe going to be a little bit more costly and the ROI isn't going to be there at the beginning.

Cavaretta: We're definitely a huge believer in pilot projects and proof of concept, and we like to develop roadmaps by doing. So get out there. Understand that it's going to be messy. Understand that it maybe going to be a little bit more costly and the ROI isn't going to be there at the beginning.

But get your feet wet. Start doing some experiments, and then, as those experiments turn from just experimentation into really providing real business value, that’s the time to start looking at a more formal aspect and more formal IT processes. But you've just got to get going at this point.

You may also be interested in:

More Stories By Dana Gardner

At Interarbor Solutions, we create the analysis and in-depth podcasts on enterprise software and cloud trends that help fuel the social media revolution. As a veteran IT analyst, Dana Gardner moderates discussions and interviews get to the meat of the hottest technology topics. We define and forecast the business productivity effects of enterprise infrastructure, SOA and cloud advances. Our social media vehicles become conversational platforms, powerfully distributed via the BriefingsDirect Network of online media partners like ZDNet and IT-Director.com. As founder and principal analyst at Interarbor Solutions, Dana Gardner created BriefingsDirect to give online readers and listeners in-depth and direct access to the brightest thought leaders on IT. Our twice-monthly BriefingsDirect Analyst Insights Edition podcasts examine the latest IT news with a panel of analysts and guests. Our sponsored discussions provide a unique, deep-dive focus on specific industry problems and the latest solutions. This podcast equivalent of an analyst briefing session -- made available as a podcast/transcript/blog to any interested viewer and search engine seeker -- breaks the mold on closed knowledge. These informational podcasts jump-start conversational evangelism, drive traffic to lead generation campaigns, and produce strong SEO returns. Interarbor Solutions provides fresh and creative thinking on IT, SOA, cloud and social media strategies based on the power of thoughtful content, made freely and easily available to proactive seekers of insights and information. As a result, marketers and branding professionals can communicate inexpensively with self-qualifiying readers/listeners in discreet market segments. BriefingsDirect podcasts hosted by Dana Gardner: Full turnkey planning, moderatiing, producing, hosting, and distribution via blogs and IT media partners of essential IT knowledge and understanding.

@BigDataExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
Quantum is a leading expert in scale-out storage, archive and data protection, providing intelligent solutions for capturing, sharing and preserving digital assets over the entire data lifecyle. They help customers maximize the value of these assets to achieve their goals, whether it’s top movie studios looking to create the next blockbuster, researchers working to accelerate scientific discovery, or small businesses trying to streamline their operations. With a comprehensive portfolio of best-in-class disk, tape and software solutions for physical, virtual and cloud environments, they enable customers to address their most demanding workflow challenges and opportunities.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SimpleECM is the only platform to offer a powerful combination of enterprise content management (ECM) services, capture solutions, and third-party business services providing simplified integrations and workflow development for solution providers. SimpleECM is opening the market to businesses of all sizes by reinventing the delivery of ECM services. Our APIs make the development of ECM services simple with the use of familiar technologies for a frictionless integration directly into web applications. The simple integration framework lets customers select and easily customize only the services they need, to deliver solutions quickly and easily. Our flexible usage-based pricing model means that you only pay for the services that you use.
Software is eating the world. Companies that were not previously in the technology space now find themselves competing with Google and Amazon on speed of innovation. As the innovation cycle accelerates, companies must embrace rapid and constant change to both applications and their infrastructure, and find a way to deliver speed and agility of development without sacrificing reliability or efficiency of operations. In her keynote DevOps Summit, Victoria Livschitz, CEO of Qubell, will discuss how IT organizations can automate just-in-time assembly of application environments – each built for a specific purpose with the right infrastructure, components, service, data and tools – and deliver this automation to developers as a self-service. Victoria’s keynote will include remarks by Kira Makagon, EVP of Innovation at RingCentral, and Ratnakar Lavu, EVP of Digital Technology at Kohl’s.
Dyn solutions are at the core of Internet Performance. Through traffic management, message management and performance assurance, Dyn is connecting people through the Internet and ensuring information gets where it needs to go, faster and more reliably than ever before. Founded in 2001 at WPI, Dyn’s global presence services more than four million enterprise, small business and personal customers.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer's customers range from Web startups to global enterprises. Products and services include bare metal and virtual servers, networking, turnkey big data solutions, private cloud solutions, and more. SoftLayer's unique advantages include the industry's first Network-Within-a-Network topology for true out-of-band access, and an easy-to-use customer portal and robust API for full remote-access of all product and service management options. SoftLayer was founded in 2005 and is headquartered in Dallas, Texas. SoftLayer was acquired by IBM in July, 2013.
You use an agile process; your goal is to make your organization more agile. But what about your data infrastructure? The truth is, today’s databases are anything but agile – they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver new features and capabilities needed to make your organization competitive. As your application and business needs change, data repositories and structures get outmoded rapidly, resulting in increased work for application developers and slow performance for end users. Further, as data sizes grow into the “Big Data” realm, this problem is exacerbated and becomes even more difficult to address. A seemingly simple schema change can take hours (or more) to perform, and as requirements evolve, the disconnect between existing data structures and actual needs diverge.
Despite the fact that majority of developers firmly believe that “it worked on my laptop” is a poor excuse for production failures, most don’t truly understand why it is virtually impossible to make your development environment representative of production. When asked, the primary reason for the production/development difference everyone mentions is technology stack spec/configuration differences. While it’s true, thanks to the black magic of Cloud (capitalization intended) with a bit of wizardry from Chef, anyone can create a pretty reliable replica of the production environment on demand. The actual main issue with reliable production mirroring is complex, but can be described in one word – data.
SYS-CON Events announced today that AppDynamics will exhibit at DevOps Summit Silicon Valley, which will take place November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Digital businesses like yours need a way to turn data into actual results. AppDynamics is ushering in the next digital age – the age of the software-defined business. AppDynamics’ mission is to deliver true application intelligence that helps your software-defined business run faster, leaner, and more efficient. You get the visibility and control you need to identify problems, find the root cause, and instantly connect the dots to get applications – and user transactions – on track and running flawlessly. AppDynamics provides the certainty that your most complex, business-critical applications are performing at the highest level and that the data and information generated by these applications can be harnessed for ongoing business advantage and impact.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In their General Session at 15th Cloud Expo, Phil Jackson, Development Community Advocate at SoftLayer, and Harold Hannon, Sr. Software Architect at SoftLayer, to discuss how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, automotive and enterprise. Members of this nonprofit consortium include some of the world’s leading, consumer electronics manufacturers, home appliances manufacturers, service providers, retailers, enterprise technology companies, startups, and chipset manufacturers. Initially based on the AllJoyn™ open source project, the AllJoyn software and services framework will be expanded with contributions fr...
Fujitsu has a long and demonstrated history delivering world-class solutions that enable businesses to succeed in a highly competitive market and ever-evolving technology landscape. The Fujitsu Cloud ISV Partner Program is one more way we’re delivering exceptional value to our customers, where we focus on helping companies transform and deliver their solutions in an “as-a-service” model from our cloud. Our aim is to work closely with leading solution providers to take full advantage of not only our platform and tools, but the underlying shift in how the market consumes technology solutions today. With the Fujitsu Cloud ISV Partner Program, we offer the chance for solution providers to step into a leadership role and maximize the benefits of the latest cloud technology, including not only the transformation and delivery of their solutions as SaaS, but also for support in areas like sales, marketing, professional services, and across innovative operating and revenue models that support a...
Cloud computing is being adopted in one form or another by 94% of enterprises today. Tens of billions of new devices are being connected to The Internet of Things. And Big Data is driving this bus. An exponential increase is expected in the amount of information being processed, managed, analyzed, and acted upon by enterprise IT. This amazing is not part of some distant future it is happening today. One report shows a 650% increase in enterprise data by 2020. Other estimates are even higher. Big Data Expo West is the place where you can see the technologies and use cases that are delivering Big Data to enterprise IT. Big Data Expo West is co-located at the Santa Clara Convention Center in the heart of Silicon Valley with Cloud Expo West--the world's most longstanding and significant event in the world of cloud computing.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!