Click here to close now.


@BigDataExpo Authors: Liz McMillan, Jayaram Krishnaswamy, Carmen Gonzalez, Elizabeth White, Pat Romanski

Related Topics: @BigDataExpo, Microservices Expo, Containers Expo Blog, IoT User Interface, @CloudExpo, SDN Journal

@BigDataExpo: Article

From Metrics to Success

Ford scours for more big data to bolster quality, improve manufacturing, streamline processes

Ford has exploited the strengths of big data analytics by directing them internally to improve business results. In doing so, they scour the metrics from the company’s best processes across myriad manufacturing efforts and through detailed outputs from in-use automobiles -- all to improve and help transform their business.

So explains Michael Cavaretta, PhD, Technical Leader of Predictive Analytics for Ford Research and Advanced Engineering in Dearborn, Michigan. Cavaretta is one of a group of experts assembled this week for The Open Group Conference in Newport Beach, California.

Cavaretta has led multiple data-analytic projects at Ford to break down silos inside the company to best define Ford’s most fruitful data sets. Ford has successfully aggregated customer feedback, and extracted all the internal data to predict how best new features in technologies will improve their cars.

As a contributor to the The Open Group conference and its focus on "Big Data -- The Transformation We Need to Embrace Today," Cavaretta explains how big data is fostering business transformation by allowing deeper insights into more types of data efficiently, and thereby improving processes, quality control, and customer satisfaction.

The interview was moderated by Dana Gardner, Principal Analyst at Interarbor Solutions. [Disclosure: The Open Group is a sponsor of BriefingsDirect podcasts.]

Here are some excerpts:

Gardner: What's different now in being able to get at this data and do this type of analysis from five years ago?

Cavaretta: The biggest difference has to do with the cheap availability of storage and processing power, where a few years ago people were very much concentrated on filtering down the datasets that were being stored for long-term analysis. There has been a big sea change with the idea that we should just store as much as we can and take advantage of that storage to improve business processes.

Gardner: How did we get here? What's the process behind the benefits?

Sea change in attitude

Cavaretta: The process behind the benefits has to do with a sea change in the attitude of organizations, particularly IT within large enterprises. There's this idea that you don't need to spend so much time figuring out what data you want to store and worry about the cost associated with it, and more about data as an asset. There is value in being able to store it, and being able to go back and extract different insights from it. This really comes from this really cheap storage, access to parallel processing machines, and great software.


I like to talk to people about the possibility that big data provides and I always tell them that I have yet to have a circumstance where somebody is giving me too much data. You can pull in all this information and then answer a variety of questions, because you don't have to worry that something has been thrown out. You have everything.

You may have 100 questions, and each one of the questions uses a very small portion of the data. Those questions may use different portions of the data, a very small piece, but they're all different. If you go in thinking, "We’re going to answer the top 20 questions and we’re just going to hold data for that," that leaves so much on the table, and you don't get any value out of it.

The process behind the benefits has to do with a sea change in the attitude of organizations, particularly IT within large enterprises.

We're a big believer in mash-ups and we really believe that there is a lot of value in being able to take even datasets that are not specifically big-data sizes yet, and then not go deep, not get more detailed information, but expand the breadth. So it's being able to augment it with other internal datasets, bridging across different business areas as well as augmenting it with external datasets.

A lot of times you can take something that is maybe a few hundred thousand records or a few million records, and then by the time you’re joining it, and appending different pieces of information onto it, you can get the big dataset sizes.

Gardner: You’re really looking primarily at internal data, while also availing yourself of what external data might be appropriate. Maybe you could describe a little bit about your organization, what you do, and why this internal focus is so important for you.

Internal consultants
Cavaretta: I'm part of a larger department that is housed over in the research and advanced-engineering area at Ford Motor Company, and we’re about 30 people. We work as internal consultants, kind of like Capgemini or Ernst & Young, but only within Ford Motor Company. We’re responsible for going out and looking for different opportunities from the business perspective to bring advanced technologies. So, we’ve been focused on the area of statistical modeling and machine learning for I’d say about 15 years or so.

And in this time, we’ve had a number of engagements where we’ve talked with different business customers, and people have said, "We'd really like to do this." Then, we'd look at the datasets that they have, and say, "Wouldn’t it be great if we would have had this. So now we have to wait six months or a year."

These new technologies are really changing the game from that perspective. We can turn on the complete fire-hose, and then say that we don't have to worry about that anymore. Everything is coming in. We can record it all. We don't have to worry about if the data doesn’t support this analysis, because it's all there. That's really a big benefit of big-data technologies.

The real value proposition definitely is changing as things are being pushed down in the company to lower-level analysts who are really interested in looking at things from a data-driven perspective. From when I first came in to now, the biggest change has been when Alan Mulally came into the company, and really pushed the idea of data-driven decisions.

The real value proposition definitely is changing as things are being pushed down in the company to lower-level analysts.

Before, we were getting a lot of interest from people who are really very focused on the data that they had internally. After that, they had a lot of questions from their management and from upper level directors and vice-president saying, "We’ve got all these data assets. We should be getting more out of them." This strategic perspective has really changed a lot of what we’ve done in the last few years.

Gardner: Are we getting to the point where this sort of Holy Grail notion of a total feedback loop across the lifecycle of a major product like an automobile is really within our grasp? Are we getting there, or is this still kind of theoretical. Can we pull it altogether and make it a science?

Cavaretta: The theory is there. The question has more to do with the actual implementation and the practicality of it. We still are talking a lot of data where even with new advanced technologies and techniques that’s a lot of data to store, it’s a lot of data to analyze, there’s a lot of data to make sure that we can mash-up appropriately.

And, while I think the potential is there and I think the theory is there. There is also a work in being able to get the data from multiple sources. So everything which you can get back from the vehicle, fantastic. Now if you marry that up with internal data, is it survey data, is it manufacturing data, is it quality data? What are the things do you want to go after first? We can’t do everything all at the same time.

Highest value

Our perspective has been let’s make sure that we identify the highest value, the greatest ROI areas, and then begin to take some of the major datasets that we have and then push them and get more detail. Mash them up appropriately and really prove up the value for the technologists.

Gardner: Clearly, there's a lot more to come in terms of where we can take this, but I suppose it's useful to have a historic perspective and context as well. I was thinking about some of the early quality gurus like Deming and some of the movement towards quality like Six Sigma. Does this fall within that same lineage? Are we talking about a continuum here over that last 50 or 60 years, or is this something different?

Cavaretta: That’s a really interesting question. From the perspective of analyzing data, using data appropriately, I think there is a really good long history, and Ford has been a big follower of Deming and Six Sigma for a number of years now.

The difference though, is this idea that you don't have to worry so much upfront about getting the data. If you're doing this right, you have the data right there, and this has some great advantages. You’ll have to wait until you get enough history to look for somebody’s patterns. Then again, it also has some disadvantage, which is you’ve got so much data that it’s easy to find things that could be spurious correlations or models that don’t make any sense.

The piece that is required is good domain knowledge, in particular when you are talking about making changes in the manufacturing plant. It's very appropriate to look at things and be able to talk with people who have 20 years of experience to say, "This is what we found in the data. Does this match what your intuition is?" Then, take that extra step.

Gardner: How has the notion of the Internet of things being brought to bear on your gathering of big data and applying it to the analytics in your organization?

Cavaretta: It is a huge area, and not only from the internal process perspective -- RFID tags within the manufacturing plans, as well as out on the plant floor, and then all of the information that’s being generated by the vehicle itself.

The Ford Energi generates about 25 gigabytes of data per hour. So you can imagine selling couple of million vehicles in the near future with that amount of data being generated. There are huge opportunities within that, and there are also some interesting opportunities having to do with opening up some of these systems for third-party developers. OpenXC is an initiative that we have going on to add at Research and Advanced Engineering.

Huge number of sensors

We have a lot of data coming from the vehicle. There’s huge number of sensors and processors that are being added to the vehicles. There's data being generated there, as well as communication between the vehicle and your cell phone and communication between vehicles.

There's a group over at Ann Arbor Michigan, the University of Michigan Transportation Research Institute (UMTRI), that’s investigating that, as well as communication between the vehicle and let’s say a home system. It lets the home know that you're on your way and it’s time to increase the temperature, if it’s winter outside, or cool it at the summer time.

The amount of data that’s been generated there is invaluable information and could be used for a lot of benefits, both from the corporate perspective, as well as just the very nature of the environment.

Gardner: Just to put a stake in the ground on this, how much data do cars typically generate? Do you have a sense of what now is the case, an average?

Cavaretta: The Energi, according to the latest information that I have, generates about 25 gigabytes per hour. Different vehicles are going to generate different amounts, depending on the number of sensors and processors on the vehicle. But the biggest key has to do with not necessarily where we are right now but where we will be in the near future.

With the amount of information that's being generated from the vehicles, a lot of it is just internal stuff. The question is how much information should be sent back for analysis and to find different patterns? That becomes really interesting as you look at external sensors, temperature, humidity. You can know when the windshield wipers go on, and then to be able to take that information, and mash that up with other external data sources too. It's a very interesting domain.

With the amount of information that's being generated from the vehicles, a lot of it is just internal stuff.

Gardner: What skills do you target for your group, and what ways do you think that you can improve on that?

Cavaretta: The skills that we have in our department, in particular on our team, are in the area of computer science, statistics, and some good old-fashioned engineering domain knowledge. We’ve really gone about this from a training perspective. Aside from a few key hires, it's really been an internally developed group.

Targeted training

The biggest advantage that we have is that we can go out and be very targeted with the amount of training that we have. There are such big tools out there, especially in the open-source realm, that we can spin things up with relatively low cost and low risk, and do a number of experiments in the area. That's really the way that we push the technologies forward.

Talking with The Open Group really gives me an opportunity to be able to bring people on board with the idea that you should be looking at a difference in mindset. It's not "Here’s a way that data is being generated, look, try and conceive of some questions that we can use, and we’ll store that too." Let's just take everything, we’ll worry about it later, and then we’ll find the value.

It's important to be thinking about data as an asset, rather than as a cost. You even have to spend some money, and it may be a little bit unsafe without really solid ROI at the beginning. Then, move towards pulling that information in, and being able to store it in a way that allows not just the high-level data scientist to get access to and provide value, but people who are interested in the data overall. Those are very important pieces.

The last one is how do you take a big-data project, how do you take something where you’re not storing in the traditional business intelligence (BI) framework that an enterprise can develop, and then connect that to the BI systems and look at providing value to those mash-ups. Those are really important areas that still need some work.

There are many companies, especially large enterprises, that are looking at their data assets and wondering what can they do to monetize this, not only to just pay for the efficiency improvement but as a new revenue stream.

Gardner: For those organizations that want to get started on this, how do you get started?

Understand that it maybe going to be a little bit more costly and the ROI isn't going to be there at the beginning.

Cavaretta: We're definitely a huge believer in pilot projects and proof of concept, and we like to develop roadmaps by doing. So get out there. Understand that it's going to be messy. Understand that it maybe going to be a little bit more costly and the ROI isn't going to be there at the beginning.

But get your feet wet. Start doing some experiments, and then, as those experiments turn from just experimentation into really providing real business value, that’s the time to start looking at a more formal aspect and more formal IT processes. But you've just got to get going at this point.

You may also be interested in:

More Stories By Dana Gardner

At Interarbor Solutions, we create the analysis and in-depth podcasts on enterprise software and cloud trends that help fuel the social media revolution. As a veteran IT analyst, Dana Gardner moderates discussions and interviews get to the meat of the hottest technology topics. We define and forecast the business productivity effects of enterprise infrastructure, SOA and cloud advances. Our social media vehicles become conversational platforms, powerfully distributed via the BriefingsDirect Network of online media partners like ZDNet and As founder and principal analyst at Interarbor Solutions, Dana Gardner created BriefingsDirect to give online readers and listeners in-depth and direct access to the brightest thought leaders on IT. Our twice-monthly BriefingsDirect Analyst Insights Edition podcasts examine the latest IT news with a panel of analysts and guests. Our sponsored discussions provide a unique, deep-dive focus on specific industry problems and the latest solutions. This podcast equivalent of an analyst briefing session -- made available as a podcast/transcript/blog to any interested viewer and search engine seeker -- breaks the mold on closed knowledge. These informational podcasts jump-start conversational evangelism, drive traffic to lead generation campaigns, and produce strong SEO returns. Interarbor Solutions provides fresh and creative thinking on IT, SOA, cloud and social media strategies based on the power of thoughtful content, made freely and easily available to proactive seekers of insights and information. As a result, marketers and branding professionals can communicate inexpensively with self-qualifiying readers/listeners in discreet market segments. BriefingsDirect podcasts hosted by Dana Gardner: Full turnkey planning, moderatiing, producing, hosting, and distribution via blogs and IT media partners of essential IT knowledge and understanding.

@BigDataExpo Stories
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line lo...
Recently announced Azure Data Lake addresses the big data 3V challenges; volume, velocity and variety. It is one more storage feature in addition to blobs and SQL Azure database. Azure Data Lake (should have been Azure Data Ocean IMHO) is really omnipotent. Just look at the key capabilities of Azure Data Lake:
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends an...
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data...
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driv...
In their session at DevOps Summit, Asaf Yigal, co-founder and the VP of Product at, and Tomer Levy, co-founder and CEO of, will explore the entire process that they have undergone – through research, benchmarking, implementation, optimization, and customer success – in developing a processing engine that can handle petabytes of data. They will also discuss the requirements of such an engine in terms of scalability, resilience, security, and availability along with how the archi...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Redis is not only the fastest database, but it has become the most popular among the new wave of applications running in containers. Redis speeds up just about every data interaction between your users or operational systems. In his session at 17th Cloud Expo, Dave Nielsen, Developer Relations at Redis Labs, will share the functions and data structures used to solve everyday use cases that are driving Redis' popularity
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll sha...
SYS-CON Events announced today that DataClear Inc. will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. The DataClear ‘BlackBox’ is the only solution that moves your PC, browsing and data out of the United States and away from prying (and spying) eyes. Its solution automatically builds you a clean, on-demand, virus free, new virtual cloud based PC outside of the United States, and wipes it clean...
SYS-CON Events announced today that Machkey International Company will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Machkey provides advanced connectivity solutions for just about everyone. Businesses or individuals, Machkey is dedicated to provide high-quality and cost-effective products to meet all your needs.
The enterprise is being consumerized, and the consumer is being enterprised. Moore's Law does not matter anymore, the future belongs to business virtualization powered by invisible service architecture, powered by hyperscale and hyperconvergence, and facilitated by vertical streaming and horizontal scaling and consolidation. Both buyers and sellers want instant results, and from paperwork to paperless to mindless is the ultimate goal for any seamless transaction. The sweetest sweet spot in innov...
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, foc...
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
Data loss happens, even in the cloud. In fact, if your company has adopted a cloud application in the past three years, data loss has probably happened, whether you know it or not. In his session at 17th Cloud Expo, Bryan Forrester, Senior Vice President of Sales at eFolder, will present how common and costly cloud application data loss is and what measures you can take to protect your organization from data loss.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete en...
The cloud has reached mainstream IT. Those 18.7 million data centers out there (server closets to corporate data centers to colocation deployments) are moving to the cloud. In his session at 17th Cloud Expo, Achim Weiss, CEO & co-founder of ProfitBricks, will share how two companies – one in the U.S. and one in Germany – are achieving their goals with cloud infrastructure. More than a case study, he will share the details of how they prioritized their cloud computing infrastructure deployments ...

Tweets by @BigDataExpo

@BigDataExpo Blogs
Recently announced Azure Data Lake addresses the big data 3V challenges; volume, velocity and variety. It is one more storage feature in addition to blobs and SQL Azure database. Azure Data Lake (should have been Azure Data Ocean IMHO) is really omnipotent. Just look at the key capabilities of Azure Data Lake:
DevOps Summit at Cloud Expo 2014 Silicon Valley was a terrific event for us. The Qubell booth was crowded on all three days. We ran demos every 30 minutes with folks lining up to get a seat and usually standing around. It was great to meet and talk to over 500 people! My keynote was well received and so was Stan's joint presentation with RingCentral on Devops for BigData. I also participated in two Power Panels – ‘Women in Technology’ and ‘Why DevOps Is Even More Important than You Think,’ both featuring brilliant colleagues and moderators and it was a blast to be a part of.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
I was recently watching one of my favorite science fiction TV shows (I’ll confess, ‘Dr. Who’). In classic dystopian fashion, there was a scene in which a young boy is running for his life across some barren ground in a war-ravaged world. One of his compatriots calls out to him to freeze, not to move another inch. The compatriot warns the young boy that he’s in a field of hand mines (no, that is not a typo, he did say hand mines). Slowly, dull gray hands with eyes in the palm start emerging from the ground around the boy and the compatriot. Suddenly, one of the hands grabs the compatriot and pu...
Today’s modern day industrial revolution is being shaped by ubiquitous connectivity, machine to machine (M2M) communications, the Internet of Things (IoT), open APIs leading to a surge in new applications and services, partnerships and eventual marketplaces. IoT has the potential to transform industry and society much like advances in steam technology, transportation, mass production and communications ushered in the industrial revolution in the 18th and 19th centuries.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
It’s not hard to find technology trade press commentary on the subject of Big Data. Variously defined (in non-technical terms) as the cluttered old shoebox of all data – and again (in more technical terms) as that amount of data that does not comfortably fit into a standard relational database for storage, processing and analytics within the normal constraints of processing, memory and data transport technologies – we can say that Big Data is an oft mentioned and sometimes misunderstood subject.
All we need to do is have our teams self-organize, and behold! Emergent design and/or architecture springs up out of the nothingness! If only it were that easy, right? I follow in the footsteps of so many people who have long wondered at the meanings of such simple words, as though they were dogma from on high. Emerge? Self-organizing? Profound, to be sure. But what do we really make of this sentence?
SCOPE is an acronym for Structured Computations Optimized for Parallel Execution, a declarative language for working with large-scale data. It is still under development at Microsoft. If you know SQL then working with SCOPE will be quite easy as SCOPE builds on SQL. The execution environment is different from that RDBMS oriented data. Data is still modeled as rows. Every row has typed columns and eveyr rowset has a well-defined schema. There is a SCOPe compiler that comes up with optimized execution plan and a runtime execution plan.
If you’re running Big Data applications, you’re going to want to look at some kind of distributed processing system. Hadoop is one of the best-known clustering systems, but how are you going to process all your data in a reasonable time frame? MapReduce has become a standard, perhaps the standard, for distributed file systems. While it’s a great system already, it’s really geared toward batch use, with jobs needing to queue for later output. This can severely hamper your flexibility. What if you want to explore some of your data? If it’s going to take all night, forget about it.
Disaster recovery (DR) has traditionally been a major challenge for IT departments. Even with the advent of server virtualization and other technologies that have simplified DR implementation and some aspects of on-going management, it is still a complex and (often extremely) costly undertaking. For those applications that do not require high availability, but are still mission- and business-critical, the decision as to which [applications] to spend money on for true disaster recovery can be a struggle.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management.” While this definition is broadly accepted and has, in fact, been my adopted standard for years, it only describes technical aspects of cloud computing. The amalgamation of technologies used to deliver cloud services is not even half the story. Above all else, the successful employment requires a tight linkage to the econ...
Too many multinational corporations delete little, if any, data even though at its creation, more than 70 percent of this data is useless for business, regulatory or legal reasons.[1] The problem is hoarding, and what businesses need is their own “Hoarders” reality show about people whose lives are driven by their stuff[2] (corporations are legally people, after all). The goal of such an intervention (and this article)? Turning hoarders into collectors.
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...

About @BigDataExpo
Big Data focuses on how to use your own enterprise data – processed in the Cloud – most effectively to drive value for your business.