Welcome!

Big Data Journal Authors: Pat Romanski, Elizabeth White, Adrian Bridgwater, Liz McMillan, Kevin Benedict

Related Topics: Cloud Expo, SOA & WOA, Virtualization, Security, Big Data Journal, SDN Journal

Cloud Expo: Blog Feed Post

Elastic Scaling of APIs in the Cloud

Here’s a quick set of practices we used to achieve our goal

As an Enterprise Architect for Intel IT, I worked with IT Engineering and our Software and Services group on the elastic scaling of the APIs that power the Intel AppUp® center. Our goal was to scale our APIs to at least 10x our baseline capacity (measured in transactions per second) by moving them to our private cloud, and ultimately to be able to connect to a public cloud provider for additional availability and scalability. Here’s a quick set of practices we used to achieve our goal:

  1. Virtualize everything.  This may seem obvious and is probably a no-op for new APIs, but in our case we were using a bare-metal installs at our gateway and database layers (the API servers themselves were already running as VMs). While our gateway hardware appliance had very good scalability, we knew we were ultimately targeting the public cloud and that our need for dynamic scaling could exceed our ability to add new physical servers.  Using a gateway that scales in pure software virtual machines without the need for special purpose-built hardware helped us achieve our goal here.
  2. Instrument everything.  We needed to be able to correlate leading indicators like transactions per second to system load at each layer so we could begin to identify bottlenecks. We also needed to characterize our workload for testing – understanding a real-world sequence of API methods and mix/ordering of reads and writes. This allowed us to create a viable set of load tests.
  3. Identify bottlenecks.  We used Apache jmeter to generate load and identify points where latency became an issue, correlating that against system loads to find out where we had reached saturation and needed to scale.
  4. Define a scaling unit. In our case, we were using dedicated DB instances rather than database-as-a-service, so we decided to scale all three layers together. We identified how many API servers would saturate the DB layer, and how many gateways we would need to manage the traffic. We then defined a collection of VMs that would provision all of these VMs together. We might have scaled each layer independently had our API been architected differently, or if we were building from scratch on database-as-a-service.

    Example collection for elastic scaling

  5. Repeat. The above let us scale from 1x to about 5x or 6x without any problem. However, when we hit 6x scaling we discovered that a new bottleneck: the overhead of replicating commits across the database instances. We went back to the drawing board and redesigned the back end for eventual consistency so we could reduce database load.
  6. Automate everything.  We use Nagios and Puppetto monitor and respond to health changes. A new scaling unit is provisioned when we hit predefined performance thresholds.

     

    Automation/Orchestration workflow

  7. Don’t forget to test scaling down.  If you set a threshold for removing capacity, it’s important to make sure that your workflow allows for a graceful shutdown and doesn’t impact calls that are in progress.

The above approach got us to 10x our initial capacity in a single data center. Because of some of our architecture decisions (coarse-grained scaling units and eventual consistency) we were then able to add a GLB and scale out to multiple data centers – first to another internal private cloud and then to a public cloud provider.

Read the original blog entry...

More Stories By Application Security

This blog references our expert posts on application and web services security.

Latest Stories from Big Data Journal
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With “smart” appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user’s habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps,...
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed wi...
Goodness there is a lot of talk about cloud computing. This ‘talk and chatter’ is part of the problem, i.e., we look at it, we prod it and we might even test it out – but do we get down to practical implementation, deployment and (if you happen to be a fan of the term) actual cloud ‘rollout’ today? Cloud offers the promise of a new era they say – and a new style of IT at that. But this again is the problem and we know that cloud can only deliver on the promises it makes if it is part of a well...
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, B...
SYS-CON Events announced today that Connected Data, the creator of Transporter, the world’s first peer-to-peer private cloud storage device, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Connected Data is the creator of Transporter, the world’s first peer-to-peer private cloud storage device. Connected Data is focused on providing elegantly designed solutions for consumers, professi...
Cisco on Wedesday announced its intent to acquire privately held Metacloud. Based in Pasadena, Calif., Metacloud deploys and operates private clouds for global organizations with a unique OpenStack-as-a-Service model that delivers and remotely operates production-ready private clouds in a customer's data center. Metacloud's OpenStack-based cloud platform will accelerate Cisco's strategy to build the world's largest global Intercloud, a network of clouds, together with key partners to address cu...
I write and study often on the subject of digital transformation - the digital transformation of industries, markets, products, business models, etc. In brief, digital transformation is about the impact that collected and analyzed data can have when used to enhance business processes and workflows. If Amazon knows your preferences for particular books and films based upon captured data, then they can apply analytics to predict related books and films that you may like. This improves sales. T...
Technology is enabling a new approach to collecting and using data. This approach, commonly referred to as the “Internet of Things” (IoT), enables businesses to use real-time data from all sorts of things including machines, devices and sensors to make better decisions, improve customer service, and lower the risk in the creation of new revenue opportunities. In his session at Internet of @ThingsExpo, Dave Wagstaff, Vice President and Chief Architect at BSQUARE Corporation, will discuss the real...
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is n...
When one expects instantaneous response from video generated on the internet, lots of invisible problems have to be overcome. In his session at 6th Big Data Expo®, Tom Paquin, EVP and Chief Technology Officer at OnLive, to discuss how to overcome these problems. A Silicon Valley veteran, Tom Paquin provides vision, expertise and leadership to the technology research and development effort at OnLive as EVP and Chief Technology Officer. With more than 20 years of management experience at lead...