Welcome!

Big Data Journal Authors: Liz McMillan, Andreas Grabner, Elizabeth White, Kevin Benedict, Michelle Drolet

News Feed Item

Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

NEW YORK, Jan. 22, 2013 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

http://www.reportlinker.com/p01084201/Solid-State-Thin-Film-Battery-Mark...

Batteries are changing. Solid state batteries permit units to be miniaturized, standalone, and portable. Solid-state batteries have advantages in power and density: low-power draw and high-energy density. They have limitations in that there is difficulty getting high currents across solid–solid interfaces.

Power delivery is different in solid state thin film batteries, – there is more power per given weight. The very small and very thin size of solid state batteries helps to reduce the physical size of the sensor or device using the battery. Units can stay in the field longer. Solid state batteries can store harvested energy. When combined with energy harvesting solid state batteries can make a device stay in the field almost indefinitely, last longer, power sensors better.

Temperature is a factor with batteries. The solid state batteries work in a very broad range of temperatures, making them able to be used for ruggedized applications. Solid state batteries are ecofriendly. Compared with traditional batteries, solid state thin film batteries are less toxic to the environment.

Development trends are pointing toward integration and miniaturization. Many technologies have progressed down the curve, but traditional batteries have not kept pace. The technology adoption of solid state batteries has implications to the chip grid. One key implication is a drive to integrate intelligent rechargeable energy storage into the chip grid. In order to achieve this requirement, a new product technology has been embraced: Solid state rechargeable energy storage devices are far more useful than non-rechargeable devices.

Thin film battery market driving forces include creating business inflection by delivering technology that supports entirely new capabilities. Sensor networks are creating demand for thin film solid state devices. Vendors doubled revenue and almost tripled production volume from first quarter. Multiple customers are moving into production with innovative products after successful trials.

A solid state battery electrolyte is a solid, not porous liquid. The solid is denser than liquid, contributing to the higher energy density. Charging is complex. In an energy-harvesting application, where the discharge is only a little and then there is a trickle back up, the number of recharge cycles goes way up. The cycles increase by the inverse of the depth of discharge. Long shelf life is a benefit of being a solid state battery. The fact that the battery housing does not need to deal with gases and vapors as a part of the charging/discharging process is another advantage.

According to IBM, the world continues to get "smaller" and "flatter." Being connected holds new potential: the planet is becoming smarter because sensors let us manage the environment. Intelligence is being infused into the way the world works.

Sensor networks are being built as sensors are integrated into the systems, processes and infrastructure that comprise surroundings. These sensor networks enable physical goods to be developed, manufactured, bought and sold with more controls than were ever available before.

That sensor network allows services to be delivered. Sensors facilitate the movement of everything from money and oil to water and electrons in a controlled environment. That is positioned to help millions of people work and live in a middleclass lifestyle.

How is this possible? The world is becoming interconnected. The world is becoming instrumented. Sensors are being embedded everywhere: in cars, appliances, cameras, roads, pipelines. Sensors work in medicine and livestock management.

Systems and objects can "speak" to each other in machine to machine networks. Think of a trillion connected and intelligent things, and the oceans of data they will produce, this is the future.

Nanostructured or nano-enabled batteries are a new generation of lithium-ion batteries and battery systems to serve applications and markets. Nano-enabled batteries employ technology at the nano-scale, a scale of minuscule particles that measure less than 100 nanometers, or 100x10-9 meters.

Traditional lithium-ion (Li-Ion) technology uses active materials, such as lithium cobalt-oxide or lithium iron phosphate, with particles that range in size between 5 and 20 micrometers. Nano-engineering improves many of the failings of present battery technology. Re-charging time and battery memory are important aspects of nano-structures. Researching battery micro- and nanostructure is a whole new approach that is only just beginning to be explored.

Industrial production of nano batteries requires production of the electrode coatings in large batches so that large numbers of cells can be produced from the same material. Manufacturers using nano materials in their chemistry had to develop unique mixing and handling technologies.

The efficiency and power output of each transducer varies according to transducer design, construction, material, operating temperature, as well as the input power available and the impedance matching at the transducer output.

Cymbet millimeter scale solid state battery applications are evolving. In the case of the Intra-Ocular Pressure Monitor, it is desirable to place microelectronic systems in very small spaces. Advances in ultra-low power Integrated Circuits, MEMS sensors and Solid State Batteries are making these systems a reality. Miniature wireless sensors, data loggers and computers can be embedded in hundreds of applications and millions of locations.

Various power factors have impinged on the advancement and development of micro devices. Power density, cell weight, battery life and form factor all have proven significant and cumbersome when considered for micro applications. Markets for solid state thin-film batteries at $65.9 million in 2012 are anticipated to reach $5.95 billion by 2019. Market growth is a result of the implementation of a connected world of sensors.

Table of Contents

Solid State Battery Executive Summary

SOLID STATE THIN FILM BATTERY EXECUTIVE SUMMARY ES-1

Advantages of Solid State Batteries ES-1

Solid State Thin Film Battery Market Driving Forces ES-3

Improvements In Wireless Sensor Technologies Have Opened

Up New Solid State Battery Markets ES-5

Nanotechnology and Solid State Batteries ES-5

Solid State Battery Market Shares ES-6

Solid State Thin-Film Battery (TFB) Market Forecasts ES-8

Solid State Battery Market Description and Market Dynamics

1. SOLID STATE THIN FILM BATTERY

MARKET DESCRIPTION AND MARKET DYNAMICS 1-1

1.1 World Economy Undergoing A Transformation 1-1

1.1.1 Global Economic Conditions: 1-2

1.1.2 Global Economy Becomes Steadily More Sluggish 1-3

1.1.3 Global Economic Conditions Impact Markets 1-5

1.2 Smarter Computing Depends on Solid State Thin Film Batteries 1-7

1.2.1 Intelligent Systems: The Next Era of IT Leverages

Solid State

Thin Film Batteries 1-8

1.2.2 Cloud and Virtualization from IBM WebSphere 1-10

1.3 Solid State Thin Film Battery Target Markets 1-11

1.3.1 Permanent Power for Wireless Sensors 1-12

1.4 Principal Features Used To Compare Rechargeable Batteries 1-13

1.5 Integrated Energy Storage 1-14

1.5.1 Pervasive Power 1-16

1.6 Reducing Grid Energy Losses 1-16

Solid State Battery Market Shares and Market Forecasts

2. SOLID STATE THIN FILM BATTERY MARKET SHARES AND MARKET FORECASTS 2-1

2.1 Advantages of Solid State Batteries 2-1

2.1.1 Solid State Thin Film Battery Market Driving Forces 2-3

2.1.2 Improvements In Wireless Sensor Technologies

Have Opened Up New Solid State Battery Markets 2-5

2.1.3 Nanotechnology and Solid State Batteries 2-5

2.2 Solid State Battery Market Shares 2-6

2.2.1 Cymbet 2-9

2.2.2 Cymbet EnerChip 2-10

2.2.3 Infinite Power Solutions (IPS) THINERGY 2-10

2.2.4 Solid State Thin Film Battery Market Leader Analysis 2-11

2.3 Solid State Thin-Film Battery (TFB) Market Forecasts 2-12

2.3.1 Solid State Battery Market Forecast Analysis 2-14

2.3.2 IBM Smarter Planet 2-23

2.4 Applications for Solid State Thin Film Battery Battery 2-25

2.4.1 Cymbet Millimeter Scale Applications 2-29

2.4.2 Cymbet Ultra Low Power Management Applications 2-30

2.4.3 Solid State Thin Film Battery Market Segment Analysis 2-31

2.4.4 Embedded Systems Need Solid State Batteries 2-35

2.4.5 Energy Harvesting 2-36

2.4.6 Near Field Communication (NFC) Transactions 2-38

2.5 Battery Market 2-39

2.6 Wireless Sensor Market 2-42

2.6.1 Benefits Of Energy Harvesting 2-43

2.6.2 Solid-State Battery Advantages 2-44

2.6.3 Comparison of Battery Performances 2-46

2.7 Solid State Thin Film Battery Price and Installed Base Analysis 2-47

2.8 Solid State Thin Film Battery Regional Analysis 2-49

Solid State Battery Product Description

3. SOLID STATE THIN FILM BATTERY PRODUCT DESCRIPTION 3-1

3.1 Cymbet Solid State Batteries (SSB) 3-1

3.1.1 Cymbet Solid State Batteries (SSB) Eco-Friendly Features 3-1

3.1.2 Cymbet EnerChip Bare Die Solid State Batteries are

Verified Non-cytotoxic 3-2

3.1.3 Cymbet EnerChip Solid State Battery Fabrication 3-3

3.1.4 Cymbet Embedded Energy Concepts For Micro-

Power Chip Design 3-3

3.1.5 Cymbet Embedded Energy Silicon Substrate Architecture 3-4

3.1.6 Cymbet Pervasive Power Architecture 3-5

3.1.7 Cymbet Cross Power Grid Similarities and Point of

Load Power Management 3-7

3.1.8 Cymbet Solid State Rechargeable Energy Storage Devices 3-10

3.1.9 Cymbet Integrated Energy Storage for Point of Load

Power Delivery 3-12

3.1.10 Cymbet Energy Processors and Solid State Batteries 3-15

3.1.11 Cymbet Millimeter Scale 3-16

3.1.12 Cymbet Millimeter Scale Energy Harvesting EH

Powered Sensors 3-18

3.1.13 Cymbet Building Millimeter Scale EH-based Computers 3-22

3.1.14 Cymbet Designing and Deploying Millimeter Scale Sensors 3-24

3.1.15 Cymbet Permanent Power Using Solid State

Rechargeable Batteries 3-24

3.1.16 Cymbet Ultra Low Power Management 3-25

3.1.17 Cymbet EH Wireless Sensor Components 3-26

3.2 Infinite Power Solutions 3-28

3.2.1 Infinite Power Solutions THINERGY MECs from IPS 3-30

3.2.2 Infinite Power Solutions (IPS) THINERGY MEC225 Device: 3-31

3.2.3 Infinite Power Solutions (IPS) THINERGY MEC220 3-32

3.2.4 Infinite Power Solutions (IPS) THINERGY MEC201 3-35

3.2.5 Infinite Power Solutions (IPS) Thinergy® MEC202 3-36

3.2.6 Infinite Power Solutions (IPS) Recharging THINERGY

Micro-Energy Cells 3-49

3.2.7 Infinite Power Solutions (IPS) THINERGY Charging Methods 3-49

3.2.8 Infinite Power Solutions (IPS) Battery Technology For

Smart Phones 3-51

3.2.9 Infinite Power Solutions (IPS) High-Capacity Cells for

Smart Phones 3-52

3.2.10 Infinite Power Solutions (IPS) 4v Solid-State Battery

Ceramic Technology With Energy Density >1,000wh/L 3-52

3.2.11 Infinite Power Solutions (IPS) All-Solid-State HEC Technology 3-54

3.3 Excelatron 3-55

3.3.1 Excelatron Current State of the Art For Thin Film Batteries 3-55

3.3.2 High Temperature Performance of Excellatron Thin

Film Batteries 3-57

3.3.3 Excelatron Solid State Battery Long Cycle Life 3-63

3.3.4 Excelatron Discharge Capacities & Profiles 3-65

3.3.5 Excellatron Polymer Film Substrate for Thin Flexible Profile 3-66

3.3.6 Excelatron High Power & Energy Density, Specific

Power & Energy 3-68

3.3.7 Excellatron High Rate Capability 3-69

3.3.8 Excellatron High Capacity Thin Film Batteries 3-70

3.4 NEC 3-73

3.4.1 Toyota 3-74

Solid State Battery Technology

4. SOLID STATE THIN FILM BATTERY TECHNOLOGY 4-1

4.1 Technologies For Manufacture Of Solid State Thin Film Batteries 4-1

4.2 Cymbet EnerChip™ Solid State Battery Charges 10 Chips

Connected In Parallel 4-1

4.2.1 Cymbet EnerChip Provides Drop-in Solar Energy Harvesting 4-5

4.2.2 Cymbet Wireless Building Automation 4-7

4.2.3 Cymbet Solutions: Industry transition to low power IC chips 4-8

4.2.4 Cymbet Manufacturing Sites 4-10

4.2.5 Cymbet Energy Harvesting Evaluation Kit 4-11

4.2.6 EnerChip Products are RoHS Compliant 4-12

4.2.7 Cymbet Safe to Transport Aboard Aircraft 4-13

4.3 Infinite Power Solutions (IPS) Ceramics 4-17

4.3.1 Infinite Power Solutions (IPS) Lithium Cobalt

Oxide (LiCoO2) Cathode and a Li-Metal Anode Technology 4-18

4.3.2 Infinite Power Solutions Technology Uses Lithium 4-24

4.3.3 IPS Thin, Flexible Battery Smaller Than A Backstage Laminate 4-25

4.3.4 IPS Higher-Density Solid-State Battery Technology 4-26

4.4 NEC Technology For Lithium-Ion Batteries 4-27

4.4.1 NEC Using Nickel In Replacement Of A Material 4-27

4.4.2 NEC Changed The Solvent Of The Electrolyte Solution 4-28

4.5 Air Batteries: Lithium Ions Convert Oxygen Into Lithium Peroxide 4-30

4.6 Nanotechnology and Solid State Thin Film Batteries 4-30

4.6.1 MIT Solid State Thin Film Battery Research 4-32

4.6.2 ORNL Scientists Reveal Battery Behavior At The Nanoscale 4-36

4.6.3 Rice University and Lockheed Martin Scientists

Discovered Way To Use Silicon To Increase Capacity Of

Lithium-Ion Batteries 4-41

4.6.4 Rice University50 Microns Battery 4-43

4.6.5 Next Generation Of Specialized Nanotechnology 4-44

4.6.6 Nanotechnology 4-45

4.6.7 Components Of A Battery 4-45

4.6.8 Impact Of Nanotechnology 4-49

4.6.9 Nanotechnology Engineering Method 4-49

4.6.10 Why Gold Nanoparticles Are More Precious Than Pretty Gold 4-51

4.6.11 Silicon Nanoplate Strategy For Batteries 4-55

4.6.12 Graphene Electrodes Developed for Supercapacitors 4-58

4.6.13 Nanoscale Materials for High Performance Batteries 4-60

4.7 John Bates Patent: Thin Film Battery and Method for Making Same 4-61

4.7.1 J. B. Bates,a N. J. Dudney, B. Neudecker, A. Ueda, and

C. D. Evans Thin-Film Lithium and Lithium-Ion Batteries 4-62

4.8 MEMS Applications 4-64

4.8.1 MEMS Pressure Sensors 4-64

4.9 c-Si Manufacturing Developments 4-66

4.9.1 Wafers 4-66

4.9.2 Texturization 4-66

4.9.3 Emitter Formation 4-66

4.9.4 Metallization 4-67

4.9.5 Automation, Statistical Process Control (SPC),

Advanced Process Control (APC) 4-68

4.9.6 Achieving Well-controlled Processes 4-68

4.9.7 Incremental Improvements 4-69

4.10 Transition Metal Oxides, MnO 4-70

4.11 Battery Cell Construction 4-73

4.11.1 Lithium Ion Cells Optimized For Capacity 4-74

4.11.2 Flat Plate Electrodes 4-75

4.11.3 Spiral Wound Electrodes 4-75

4.11.4 Multiple Electrode Cells 4-76

4.11.5 Fuel Cell Bipolar Configuration 4-76

4.11.6 Electrode Interconnections 4-77

4.11.7 Sealed Cells and Recombinant Cells 4-77

4.11.8 Battery Cell Casing 4-78

4.11.9 Button Cells and Coin Cells 4-80

4.11.10 Pouch Cells 4-80

4.11.11 Prismatic Cells 4-81

4.12 Naming Standards For Cell Identification 4-81

4.12.1 High Power And Energy Density 4-82

4.12.2 High Rate Capability 4-82

4.13 Comparison Of Rechargeable Battery Performance 4-83

4.14 Micro Battery Solid Electrolyte 4-86

4.14.1 Challenges in Battery and Battery System Design 4-87

4.15 Types of Batteries 4-90

4.15.1 Lead-Acid Batteries 4-90

4.15.2 Nickel-Based Batteries 4-91

4.15.3 Conventional Lithium-ion Technologies 4-91

4.15.4 Advanced Lithium-ion Batteries 4-92

4.15.5 Thin Film Battery Solid State Energy Storage 4-93

4.15.6 Ultra Capacitors 4-93

4.15.7 Fuel Cells 4-94

4.16 Battery Safety / Potential Hazards 4-94

4.16.1 Thin Film Solid-State Battery Construction 4-94

4.16.2 Battery Is Electrochemical Device 4-96

4.16.3 Battery Depends On Chemical Energy 4-97

4.16.4 Characteristics Of Battery Cells 4-97

Solid State Battery Company Profiles

5 SOLID STATE THIN FILM BATTERY COMPANY PROFILES 5-1

5.1 Balsara Research Group, UC Berkley 5-1

5.2 Cymbet 5-6

5.2.1 Cymbet Customer/Partner TI 5-14

5.2.2 Cymbet EH Building Automation 5-19

5.2.3 Cymbet Semi Passive RF Tag Applications 5-21

5.2.4 Cymbet Enerchips Environmental Regulation Compliance 5-22

5.2.5 Cymbet Investors 5-24

5.2.6 Cymbet Investors 5-25

5.2.7 Cymbet Distribution 5-28

5.2.8 Cymbet Authorized Resellers 5-31

5.2.9 Cymbet Private Equity Financing 5-34

5.3 Johnson Research & Development / Excellatron 5-35

5.3.1 Characteristics of Excellatron Batteries: 5-36

5.3.2 Excellatron Thin Film Solid State Battery Applications 5-39

5.3.3 Excellatron Strategic Relationships 5-40

5.4 Infinite Power Solutions 5-42

5.4.1 IPS THINERGY MECs 5-42

5.4.2 Infinite Power Solutions Breakthrough Battery Technology 5-43

5.4.3 IPS Targets Smart Phone Batteries 5-44

5.5 MIT Solid State Battery Research 5-45

5.5.1 When Discharging, Special Lithium Air Batteries Draw In Some Lithium Ions To Convert Oxygen Into Lithium Peroxide 5-47

5.6 NEC 5-49

5.6.1 NEC IT Services Business 5-50

5.6.2 NEC Platform Business 5-50

5.6.3 NEC Carrier Network Business 5-51

5.6.4 NEC Social Infrastructure Business 5-51

5.6.5 NEC Personal Solutions Business 5-51

5.7 Planar Energy Devices 5-52

5.8 Seeo 5-52

5.8.1 Seeo Investors 5-53

5.9 Toyota 5-54

5.10 Watchdata Technologies 5-56

List of Tables and Figures

Solid State Battery Executive Summary

Table ES-1 ES-2

Solid-State Battery Advantages and Disadvantages

Table ES-2 ES-4

Thin Film Battery Market Driving Forces

Figure ES-3 ES-7

Solid State Thin Film Battery Market Shares, Dollars,

First Three Quarters 2012

Figure ES-4 ES-9

Solid State Thin Film Market Forecasts, Dollars, Worldwide, 2013-2019

Solid State Battery Market Description and Market Dynamics

Table 1-1 1-11

Thin Film Battery Target Markets

Table 1-2 1-11

Principal Features Used To Compare Rechargeable Batteries

Figure 1-3 1-15

Energy Storage and Generation for Wireless Sensor Network

Figure 1-4 1-17

Energy Information Administration and Energy Loss Presentation

Solid State Battery Market Shares and Market Forecasts

Table 2-1 2-2

Solid-state battery Advantages and Disadvantages

Table 2-2 2-4

Thin Film Battery Market Driving Forces

Figure 2-3 2-7

Solid State Thin Film Battery Market Shares, Dollars, First

Three Quarters 2012

Table 2-4 2-8

Solid State Thin Film Battery Market Shares, Dollars,

Worldwide, First Three Quarters 2012

Figure 2-5 2-13

Solid State Thin Film Market Forecasts, Dollars, Worldwide, 2013-2019

Table 2-6 2-14

Solid State Thin Film Battery Market Application Forecasts,

Units and Dollars, Worldwide, 2013-2019

Figure 2-7 2-16

Solid State Thin Film Market Forecasts, Units, Worldwide,

2013-2019

Table 2-8 2-18

Solid State Thin Film Battery Market Forecasts Units and Dollars,

Worldwide, 2013-2019

Figure 2-8 2-19

Small Solid State Thin Film Battery Market Shipments Forecasts

Dollars, Worldwide, 2013-2019

Figure 2-9 2-20

Mid-Size Solid State Thin Film Battery, Market Forecasts

Dollars, Worldwide, 2013-2019

Figure 2-10 2-21

Small Solid State Thin Film Battery Market Forecasts, Units,

Worldwide, 2013-2019

Figure 2-11 2-22

Mid-Size Solid State Thin Film Market Forecasts, Units,

Worldwide, 2013-2019

Figure 2-12 2-24

IBM Smarter Planet: Trillions of Interconnected Sensors

Figure 2-13 2-25

Cymbet Energy Harvesting (EH) Building Automation

Figure 2-14 2-26

Cymbet Energy Harvesting (EH) Medical Applications

Figure 2-15 2-27

Cymbet Semi Passive RF Tag Applications

Figure 2-16 2-28

RF Charging and Comms – TI and Cymbet

Figure 2-17 2-30

Cymbet Millimeter Scale Applications

Figure 2-18 2-32

Solid State Thin Film Battery Market Segments, Dollars,

Worldwide, 2012

Figure 2-19 2-33

Solid State Thin Film Battery Market Segments, Dollars, Worldwide, 2019

Table 2-20 2-34

Solid State Thin Film Battery Market Application Forecasts

Units and Dollars, Worldwide, 2013-2019

Figure 2-21 2-35

Solid State Thin Film Battery Market Application Forecasts

Units and Dollars, Worldwide, 2013-2019

Figure 2-22 2-37

Cymbet Energy Harvesting Applications

Table 2-23 2-46

Excelatron Comparison of Battery Performances

Table 2-24 2-48

Solid State Thin Film Battery Market Installed Base

Forecasts Units and Dollars, Worldwide, 2013-2019

Figure 2-25 2-50

Solid State Thin Film Battery Regional Market Segments, 2012

Table 2-26 2-51

Solid State Thin Film Battery Regional Market Segments, 2012

Solid State Battery Product Description

Table 3-1 3-2

EnerChip device Eco-Friendly Attributes:

Table 3-2 3-4

Cymbet Embedded Energy And The Advantages Of Point Of Load

Energy Delivery Functions

Table 3-3 3-5

Cymbet Solid State Energy Storage Devices And IC

Table 3-4 3-6

Cymbet Pervasive Power Architecture Advantages

Table 3-5 3-6

Cymbet Pervasive Power architecture Embedded Energy Advantages

Table 3-6 3-7

Cymbet Cross Power Grid Functions

Table 3-7 3-8

Cymbet Point of Load Power-On-Chip Benefits

Table 3-8 3-9

Cymbet Assessment of Chip Grid Trends

Figure 3-9 3-11

Cymbet Solid State Rechargeable Energy Storage Devices

Figure 3-10 3-12

Cymbet Rechargeable Solid State Energy bare die Co-Packaged

Side-By Side With An IC:

Figure 3-11 3-13

Rechargeable Solid State Energy bare die Co-packaged in

"wedding cake" die stack:

Figure 3-12 3-13

Cymbet Rechargeable Solid State Energy bare die in System on Chip module:

Figure 3-13 3-14

Solid State Energy Storage Built On Silicon Wafer Solder

Attached To The Circuit Board Surface

Figure 3-14 3-14

Solid State Energy Storage Silicon Wafer Solder Attached To The

Circuit Board Surface

Figure 3-15 3-17

Cymbet Millimeter Scale Applications

Figure 3-16 3-19

Cymbet Millimeter-Sized Solar Energy Harvesting Sensor

Sits On A Solid State Rechargeable Energy Storage Device

Figure 3-17 3-20

Cymbet Millimeter Scale Computer Wireless Sensor Photo On US

Penny for Size Reference

Figure 3-18 3-21

EnerChip 1uAh Battery On US Dollar For Size Reference

Figure 3-19 3-23

Cymbet Millimeter Scale EH-based Computer IOPM Layers Block Diagram

Figure 3-20 3-27

Cymbet Wireless Sensor IOPM Block Diagram

Table 3-21 3-28

Cymbet Intra Ocular Pressure Sensor IOPM basic elements:

Figure 3-22 3-29

Infinite Power Solutions Thinergy MEC201

Figure 3-23 3-31

Infinite Power Solutions (IPS) THINERGY MEC225

Table 3-24 3-32

Device: THINERGY MEC225 Specifications

Figure 3-25 3-33

Infinite Power Solutions (IPS) Device: THINERGY MEC220

Table 3-26 3-34

Infinite Power Solutions (IPS) THINERGY MEC220 Specifications

Figure 3-27 3-35

Device: THINERGY MEC201

Table 3-28 3-36

Device: THINERGY MEC201

Figure 3-29 3-37

Infinite Power Solutions (IPS) THINERGY® MEC202

Table 3-30 3-38

Device: Infinite Power Solutions (IPS) THINERGY MEC202

Table 3-31 3-39

Infinite Power Solutions (IPS) THINERGY MEC202 Features

Table 3-32 3-40

Infinite Power Solutions (IPS) THINERGY MEC202 Applications

Table 3-33 3-41

Infinite Power Solutions (IPS) THINERGY MEC202 Benefits

Figure 3-34 3-42

Infinite Power Solutions (IPS) THINERGY MEC202 Typical Discharge

Curves @25°C (1.7 mAh Standard Grade Cell)

Figure 3-35 3-43

Infinite Power Solutions (IPS) THINERGY MEC202 Typical Discharge

Curves @25°C (1.7 mAh Performance Grade Cell)

Figure 3-36 3-44

Typical Maximum Current vs. Temperature —All Capacity Options

Figure 3-37 3-45

Typical Charge Curve @ 25°C — All Capacity Options

Figure 3-38 3-46

OCV as a Function of State of Charge at 25°C

Table 3-39 3-47

Infinite Power Solutions (IPS) THINERGY MEC202 Functions

Table 3-40 3-50

Infinite Power Solutions (IPS) THINERGY Charging Methods

Table 3-41 3-50

Infinite Power Solutions (IPS) THINERGY Energy Harvesting Charging Methods

Figure 3-42 3-56

Excelatron Schematic Cross Section Of A Thin Film Solid-State Battery

Figure 3-43 3-58

Charge/discharge profile of Excellatron's thin film battery at 25ºC.

Figure 3-44 3-59

Charge/discharge profile of Excellatron's thin film battery at 150ºC.

Figure 3-45 3-60

High temperature (150ºC) charge and Discharge Capacity As A

Function Of Cycle Number For A Thin Film Battery.

Figure 3-46 3-61

Excelatron Capacity And Resistance

Figure 3-47 3-62

Excelatron High Rate Pulse Discharge

Figure 3-48 3-63

Excelatron High Rate Pulse Discharge

Figure 3-49 3-64

Excelatron Long Term Cyclability of a Thin Film Solid State Battery

Figure 3-50 3-65

Excelatron Long Term Cyclability Of A Thin Film Battery Thicker Cathode

Figure 3-51: 3-66

Excelatron Discharge Capacity

Figure 3-52 3-67

Excelatron Thin film Batteries Deposited On A Thin Polymer Substrate

Figure 3- 53 3-68

Excelatron Rechargeable Thin Film Solid State Battery Thickness

Table 3-54 3-69

Excelatron Comparison of Battery Performances

Table 3-55 3-71

Excellatron High Capacity Thin Film Batteries

Figure 3-56 3-72

Excellatron Voltage And Current Profile of a 10 mAh Battery Characteristics

Figure 3-57 3-73

NEC High Voltage, Long Life Manganese Lithium-Ion Battery

Solid State Battery Technology

Figure 4-1 4-2

Cymbet EnerChip CC Smart Solid State Batteries Functional DIagram

Table 4-2 4-4

Cymbet EnerChip Single Chip Ups Provides Many Advantages For

Electronics Designers:

Figure 4-3 4-6

Cymbet Energy Processor for Max Peak Power 6

Figure 4-4 4-7

Cymbet Energy Harvesting Building Automation 7

Table 4-5 4-8

Cymbet Solutions Areas 8

Figure 4-6 4-11

Cymbet Energy Harvesting Evaluation Kit 11

Table 4-7 4-14

Cymbet Products Offered by Digi-Key 14

Table 4-8 4-17

Infinite Power Solutions (IPS) Technology and Chemistry 17

Figure 4-9 4-23

IPS THINERGY MECs 23

Table 4-10 4-31

Thin Film Battery Unique Properties 31

Figure 4-11 4-33

Solid-State Lithium-Air Battery (Highlighted In Orange) 33

Figure 4-12 4-36

Department of Energy's Oak Ridge National Laboratory Battery Behavior At The Nanoscale 36

Figure 4-13 4-40

Rice Researchers Advanced Lithium-Ion Technique has Microscopic Pores That Dot A Silicon Wafer 40

Figure 4-14 4-43

Rice University50 Microns Battery 43

Figure 4-15 4-48

Discharge of a Lithium Battery 48

Figure 4-16 4-52

Nanoparticle Illustration 52

Figure 4-17 4-55

Silver Nanoplates Decorated With Silver Oxy Salt Nanoparticles

Figure 4-17a 4-57

Graphene Molecular Illustration

(Lawrence Berkeley National Laboratory)

Figure 4-18 4-61

John Bates Patent: Thin Film Battery and Method for Making Same

Table 4-19 4-67

Approaches to Selective Emitter (SE) Technologies

Figure 4-20 4-72

XRD Patterns of MnO Thin Films

Table 4-21 4-80

Comparison Of Battery Performances

Table 4-22 4-81

Common Household-Battery Sizes, Shape, and Dimensions

Table 4-23 4-85

Thin Films For Advanced Batteries

Table 4-24 4-86

Thin Film Batteries Technology Aspects

Table 4-25 4-87

Solid State Thin Film Battery Applications

Figure 4-26 4-88

Design Alternatives of Thin Film Rechargable Batteries

Table 4-27 4-89

Challenges in Battery and Battery System Design

Figure 4-28 4-96

Typical Structure Of A Thin Film Solid State Battery

Table 4-30 4-99

Characteristics Of Battery Cells

Solid State Battery Company Profiles

Figure 5-1 5-3

Balsara Research Group Transported Material and Transporting Medium

Table 5-2 5-4

Balsara Research Group Collaborators:

Table 5-3 5-5

Balsara Research Group Funding Sources

Table 5-4 5-7

Cymbet Supporting Technologies

Table 5-5 5-9

Cymbet Smart Energy

Figure 5-6 5-10

Cymbet Industry Trends and Storage Solutions Alignment

Table 5-7 5-11

Cymbet Addresses Energy Storage Requirements for New Products

Figure 5-8 5-12

Key Battery Characteristics

Figure 5-9 5-13

Cymbet Solid State Batteries – Wafer to PCB

Table 5-10 5-14

Cymbet Customers

Table 5-11 5-16

Cymbet / TI EnerChip Key Benefits

Table 5-12 5-17

Cymbet / TI EnerChip Key Features

Figure 5-13 5-18

RF Charging and Comms – TI and Cymbet

Figure 5-14 5-19

Cymbet EH Building Automation

Figure 5-15 5-21

Cymbet Semi Passive RF Tag Applications

Figure 5-16 5-22

Cymbet Enerchips Environmental Regulation Compliance

Table 5-17 5-23

Cymbet Solid State Energy Storage Innovation

Figure 5-18 5-24

Cymbet Strategic Investors

Figure 5-19 5-25

Cymbet Investors

Figure 5-20 5-28

Cymbet Distribution Partners

Figure 5-21 5-29

Cymbet Distributors

Table 5-22 5-32

Cymbet Authorized Resellers

Figure 5-23 5-33

Cymbet Industry Awards and Recognition

Table 5-24 5-37

Characteristics of Excellatron Batteries

Table 5-25 5-38

Technology of Excellatron Batteries

Table 5-26 5-40

Excellatron Achievements:

Table 5-27 5-41

Excellatron Strategic Relationships

Figure 5-28 5-46

Solid-State Lithium-Air Battery (Highlighted In Orange)

Figure 5-29 5-55

Toyota Thin Film Battery

To order this report:

Electronic_Component_and_Semiconductor Industry: Solid State Thin Film Battery: Market Shares, Strategies, and Forecasts, Worldwide, Nanotechnology, 2013 to 2019

Contact Nicolas: nicolasbombourg@reportlinker.com
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

Cloud Expo Breaking News
More and more enterprises today are doing business by opening up their data and applications through APIs. Though forward-thinking and strategic, exposing APIs also increases the surface area for potential attack by hackers. To benefit from APIs while staying secure, enterprises and security architects need to continue to develop a deep understanding about API security and how it differs from traditional web application security or mobile application security. In his session at 14th Cloud Expo, Sachin Agarwal, VP of Product Marketing and Strategy at SOA Software, will walk you through the various aspects of how an API could be potentially exploited. He will discuss the necessary best practices to secure your data and enterprise applications while continue continuing to support your business’s digital initiatives.
Web conferencing in a public cloud has the same risks as any other cloud service. If you have ever had concerns over the types of data being shared in your employees’ web conferences, such as IP, financials or customer data, then it’s time to look at web conferencing in a private cloud. In her session at 14th Cloud Expo, Courtney Behrens, Senior Marketing Manager at Brother International, will discuss how issues that had previously been out of your control, like performance, advanced administration and compliance, can now be put back behind your firewall.
Next-Gen Cloud. Whatever you call it, there’s a higher calling for cloud computing that requires providers to change their spots and move from a commodity mindset to a premium one. Businesses can no longer maintain the status quo that today’s service providers offer. Yes, the continuity, speed, mobility, data access and connectivity are staples of the cloud and always will be. But cloud providers that plan to not only exist tomorrow – but to lead – know that security must be the top priority for the cloud and are delivering it now. In his session at 14th Cloud Expo, Kurt Hagerman, Chief Information Security Officer at FireHost, will detail why and how you can have both infrastructure performance and enterprise-grade security – and what tomorrow's cloud provider will look like.
The social media expansion has shown just how people are eager to share their experiences with the rest of the world. Cloud technology is the perfect platform to satisfy this need given its great flexibility and readiness. At Cynny, we aim to revolutionize how people share and organize their digital life through a brand new cloud service, starting from infrastructure to the users’ interface. A revolution that began from inventing and designing our very own infrastructure: we have created the first server network powered solely by ARM CPU. The microservers have “organism-like” features, differentiating them from any of the current technologies. Benefits include low consumption of energy, making Cynny the ecologically friendly alternative for storage as well as cheaper infrastructure, lower running costs, etc.
The revolution that happened in the server universe over the past 15 years has resulted in an eco-system that is more open, more democratically innovative and produced better results in technically challenging dimensions like scale. The underpinnings of the revolution were common hardware, standards based APIs (ex. POSIX) and a strict adherence to layering and isolation between applications, daemons and kernel drivers/modules which allowed multiple types of development happen in parallel without hindering others. Put simply, today's server model is built on a consistent x86 platform with few surprises in its core components. A kernel abstracts away the platform, so that applications and daemons are decoupled from the hardware. In contrast, networking equipment is still stuck in the mainframe era. Today, networking equipment is a single appliance, including hardware, OS, applications and user interface come as a monolithic entity from a single vendor. Switching between different vendor'...
Cloud backup and recovery services are critical to safeguarding an organization’s data and ensuring business continuity when technical failures and outages occur. With so many choices, how do you find the right provider for your specific needs? In his session at 14th Cloud Expo, Daniel Jacobson, Technology Manager at BUMI, will outline the key factors including backup configurations, proactive monitoring, data restoration, disaster recovery drills, security, compliance and data center resources. Aside from the technical considerations, the secret sauce in identifying the best vendor is the level of focus, expertise and specialization of their engineering team and support group, and how they monitor your day-to-day backups, provide recommendations, and guide you through restores when necessary.
Cloud scalability and performance should be at the heart of every successful Internet venture. The infrastructure needs to be resilient, flexible, and fast – it’s best not to get caught thinking about architecture until the middle of an emergency, when it's too late. In his interactive, no-holds-barred session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, will dive into how to design and build-out the right cloud infrastructure.
You use an agile process; your goal is to make your organization more agile. What about your data infrastructure? The truth is, today’s databases are anything but agile – they are effectively static repositories that are cumbersome to work with, difficult to change, and cannot keep pace with application demands. Performance suffers as a result, and it takes far longer than it should to deliver on new features and capabilities needed to make your organization competitive. As your application and business needs change, data repositories and structures get outmoded rapidly, resulting in increased work for application developers and slow performance for end users. Further, as data sizes grow into the Big Data realm, this problem is exacerbated and becomes even more difficult to address. A seemingly simple schema change can take hours (or more) to perform, and as requirements evolve the disconnect between existing data structures and actual needs diverge.
SYS-CON Events announced today that SherWeb, a long-time leading provider of cloud services and Microsoft's 2013 World Hosting Partner of the Year, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. A worldwide hosted services leader ranking in the prestigious North American Deloitte Technology Fast 500TM, and Microsoft's 2013 World Hosting Partner of the Year, SherWeb provides competitive cloud solutions to businesses and partners around the world. Founded in 1998, SherWeb is a privately owned company headquartered in Quebec, Canada. Its service portfolio includes Microsoft Exchange, SharePoint, Lync, Dynamics CRM and more.
The world of cloud and application development is not just for the hardened developer these days. In their session at 14th Cloud Expo, Phil Jackson, Development Community Advocate for SoftLayer, and Harold Hannon, Sr. Software Architect at SoftLayer, will pull back the curtain of the architecture of a fun demo application purpose-built for the cloud. They will focus on demonstrating how they leveraged compute, storage, messaging, and other cloud elements hosted at SoftLayer to lower the effort and difficulty of putting together a useful application. This will be an active demonstration and review of simple command-line tools and resources, so don’t be afraid if you are not a seasoned developer.
SYS-CON Events announced today that BUMI, a premium managed service provider specializing in data backup and recovery, will exhibit at SYS-CON's 14th International Cloud Expo®, which will take place on June 10–12, 2014, at the Javits Center in New York City, New York. Manhattan-based BUMI (Backup My Info!) is a premium managed service provider specializing in data backup and recovery. Founded in 2002, the company’s Here, There and Everywhere data backup and recovery solutions are utilized by more than 500 businesses. BUMI clients include professional service organizations such as banking, financial, insurance, accounting, hedge funds and law firms. The company is known for its relentless passion for customer service and support, and has won numerous awards, including Customer Service Provider of the Year and 10 Best Companies to Work For.
Chief Security Officers (CSO), CIOs and IT Directors are all concerned with providing a secure environment from which their business can innovate and customers can safely consume without the fear of Distributed Denial of Service attacks. To be successful in today's hyper-connected world, the enterprise needs to leverage the capabilities of the web and be ready to innovate without fear of DDoS attacks, concerns about application security and other threats. Organizations face great risk from increasingly frequent and sophisticated attempts to render web properties unavailable, and steal intellectual property or personally identifiable information. Layered security best practices extend security beyond the data center, delivering DDoS protection and maintaining site performance in the face of fast-changing threats.
From data center to cloud to the network. In his session at 3rd SDDC Expo, Raul Martynek, CEO of Net Access, will identify the challenges facing both data center providers and enterprise IT as they relate to cross-platform automation. He will then provide insight into designing, building, securing and managing the technology as an integrated service offering. Topics covered include: High-density data center design Network (and SDN) integration and automation Cloud (and hosting) infrastructure considerations Monitoring and security Management approaches Self-service and automation
In his session at 14th Cloud Expo, David Holmes, Vice President at OutSystems, will demonstrate the immense power that lives at the intersection of mobile apps and cloud application platforms. Attendees will participate in a live demonstration – an enterprise mobile app will be built and changed before their eyes – on their own devices. David Holmes brings over 20 years of high-tech marketing leadership to OutSystems. Prior to joining OutSystems, he was VP of Global Marketing for Damballa, a leading provider of network security solutions. Previously, he was SVP of Global Marketing for Jacada where his branding and positioning expertise helped drive the company from start-up days to a $55 million initial public offering on Nasdaq.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 14th Cloud Expo, Marc Jones, Vice President of Product Innovation for SoftLayer, will explain how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.