Welcome!

Big Data Journal Authors: Liz McMillan, Elizabeth White, Dana Gardner, Pat Romanski, Jason Bloomberg

Blog Feed Post

Deja VVVu: Others Claiming Gartner’s Construct for Big Data

By

This article originally appeared on the Gartner Blog Network in January 2012 and is reprinted here with permission from Gartner and its author Doug Laney

In the late 1990s, while a META Group analyst (Note: META is now part of Gartner), it was becoming evident that our clients increasingly were encumbered by their data assets.  While many pundits were talking about, many clients were lamenting, and many vendors were seizing the opportunity of these fast-growing data stores, I also realized that something else was going on. Sea changes in the speed at which data was flowing mainly due to electronic commerce, along with the increasing breadth of data sources, structures and formats due to the post Y2K-ERP application boom were as or more challenging to data management teams than was the increasing quantity of data.

In an attempt to help our clients get a handle on how to recognize, and more importantly, deal with these challenges I began first speaking at industry conferences on this 3-dimensional data challenge of increasing data volume, velocity and variety.  Then in late 2000 I drafted a research note published in February 2001 entitled 3-D Data Management: Controlling Data Volume, Velocity and Variety.

Fast forward to today:  The “3V’s” framework for understanding and dealing with Big Data has now become ubiquitous.  In fact, other research firms, major vendors and consulting firms have even posited the 3Vs (or an unmistakable variant) as their own concept.  Since the original piece is no longer available in Gartner archives but is in increasing demand, I wanted to make it available here for anyone to reference and cite:

Original Research Note PDF: 3-D Data Management: Controlling Data Volume, Velocity and Variety

Date: 6 February 2001     Author: Doug Laney

3-D Data Management: Controlling Data Volume, Velocity and Variety. Current business conditions and mediums are pushing traditional data management principles to their limits, giving rise to novel and more formalized approaches.

META Trend: During 2001/02, leading enterprises will increasingly use a centralized data warehouse to define a common business vocabulary that improves internal and external collaboration. Through 2003/04, data quality and integration woes will be tempered by data profiling technologies (for generating metadata, consolidated schemas, and integration logic) and information logistics agents. By 2005/06, data, document, and knowledge management will coalesce, driven by schema-agnostic indexing strategies and portal maturity.

The effect of the e-commerce surge, a rise in merger & acquisition activity, increased collaboration, and the drive for harnessing information as a competitive catalyst is driving enterprises to higher levels of consciousness about how data is managed at its most basic level.  In 2001-02, historical, integrated databases (e.g. data warehouses, operational data stores, data marts), will be leveraged not only for intended analytical purposes, but increasingly for intra-enterprise consistency and coordination. By 2003-04, these structures (including their associated metadata) will be on par with application portfolios, organization charts and procedure manuals for defining a business to its employees and affiliates.

Data records, data structures, and definitions commonly accepted throughout an enterprise reduce fiefdoms pulling against each other due to differences in the way each perceives where the enterprise has been, is presently, and is headed.  Readily accessible current and historical records of transactions, affiliates (partners, employees, customers, suppliers), business processes (or rules), along with definitional and navigational metadata (see ADS Delta 896, 21st Century Metadata: Mapping the Enterprise Genome, 7 Aug 2000) enable employees to paddle in the same direction.  Conversely, application-specific data stores (e.g. accounts receivable versus order status), geographic-specific data stores (e.g. North American sales vs. International sales), offer conflicting, or insular views of the enterprise, that while important for feeding transactional systems, provide no “single version of the truth,” giving rise to inconsistency in the way enterprise factions function.

While enterprises struggle to consolidate systems and collapse redundant databases to enable greater operational, analytical, and collaborative consistencies, changing economic conditions have made this job more difficult.  E-commerce, in particular, has exploded data management challenges along three dimensions: volumes, velocity and variety.  In 2001/02, IT organizations must compile a variety of approaches to have at their disposal for dealing with each.

Data Volume

E-commerce channels increase the depth and breadth of data available about a transaction (or any point of interaction). The lower cost of e-channels enables and enterprise to offer its goods or services to more individuals or trading partners, and up to 10x the quantity of data about an individual transaction may be collected—thereby increasing the overall volume of data to be managed.  Furthermore, as enterprises come to see information as a tangible asset, they become reluctant to discard it.

Typically, increases in data volume are handled by purchasing additional online storage.  However as data volume increases, the relative value of each data point decreases proportionately—resulting in a poor financial justification for merely incrementing online storage. Viable alternates and supplements to hanging new disk include:

  • Implementing tiered storage systems (see SIS Delta 860, 19 Apr 2000) that cost effectively balance levels of data utility with data availability using a variety of media.
  • Limiting data collected to that which will be leveraged by current or imminent business processes
  • Limiting certain analytic structures to a percentage of statistically valid sample data.
  • Profiling data sources to identify and subsequently eliminate redundancies
  • Monitoring data usage to determine “cold spots” of unused data that can be eliminated or offloaded to tape (e.g. Ambeo, BEZ Systems, Teleran)
  • Outsourcing data management altogether (e.g. EDS, IBM)

Data Velocity

E-commerce has also increased point-of-interaction (POI) speed, and consequently the pace data used to support interactions and generated by interactions. As POI performance is increasingly perceived as a competitive differentiator (e.g. Web site response, inventory availability analysis, transaction execution, order tracking update, product/service delivery, etc.) so too is an organization’s ability to manage data velocity.  Recognizing that data velocity management is much more than a physical bandwidth and protocol issue, enterprises are implementing architectural solutions such as:

  • Operational data stores (ODSs) that periodically extract, integrate and re-organize production data for operational inquiry or tactical analysis
  • Caches that provide instant access to transaction data while buffering back-end systems from additional load and performance degradation. (Unlike ODSs, caches are updated according to adaptive business rules and have schemas that mimic the back-end source.)
  • Point-to-point (P2P) data routing between databases and applications (e.g. D2K, DataMirror) that circumvents high-latency hub-and-spoke models that are more appropriate for strategic analysis
  • Designing architectures that balance data latency with application data requirements and decision cycles, without assuming the entire information supply chain must be near real-time.

Data Variety

Through 2003/04, no greater barrier to effective data management will exist than the variety of incompatible data formats, non-aligned data structures, and inconsistent data semantics.  By this time, interchange and translation mechanisms will be built into most DBMSs. But until then, application portfolio sprawl (particularly when based on a “strategy” of autonomous software implementations due to e-commerce solution immaturity), increased partnerships, and M&A activity intensifies data variety challenges. Attempts to resolve data variety issues must be approached as an ongoing endeavor encompassing the following techniques:

  • Data profiling (e.g. Data Mentors, Metagenix) to discover hidden relationships and resolve inconsistencies across multiple data sources (see ADS898)
  • XML-based data format “universal translators” that import data into standard XML documents for export into another data format (e.g. infoShark, XML Solutions)
  • Enterprise application integration (EAI) predefined adapters (e.g. NEON, Tibco, Mercator) for acquiring and delivering data between known applications via message queues, or EAI development kits for building custom adapters.
  • Data access middleware (e.g. Information Builders’ EDA/SQL, SAS Access, OLE DB, ODBC) for direct connectivity between applications and databases
  • Distributed query management (DQM) software (e.g. Enth, InfoRay, Metagon) that adds a data routing and integration intelligence layer above “dumb” data access middleware
  • Metadata management solutions (i.e. repositories and schema standards) to capture and make available definitional metadata that can help provide contextual consistency to enterprise data
  • Advanced indexing techniques for relating (if not physically integrating) data of various incompatible types (e.g. multimedia, documents, structured data, business rules).

As with any sufficiently fashionable technology, users should expect the data management market place ebb-and-flow to yield solutions that consolidate multiple techniques and solutions that are increasingly application/environment specific. (See Figure 1 – Data Management Solutions) In selecting a technique or technology, enterprises should first perform an information audit assessing the status of their information supply chain to identify and prioritize particular data management issues.

Business Impact: Attention to data management, particularly in a climate of e-commerce and greater need for collaboration, can enable enterprises to achieve greater returns on their information assets.

Bottom Line: In 2001/02, IT organizations must look beyond traditional direct brute force physical approaches to data management.  Through 2003/04, practices for resolving e-commerce accelerated data volume, velocity and variety issues will become more formalized and diverse.  Increasingly, these techniques involve trade-offs and architectural solutions that involve and impact application portfolios and business strategy decisions.

###

Over the past decade, Gartner analysts including Regina Casonato, Anne Lapkin, Mark A. Beyer, Yvonne Genovese and Ted Friedman have continued to expand our research on this topic, identifying and refining other “big data” concepts. In September 2011 they published the tremendous research note Information Management in the 21st Century.  And in 2012, Mark Beyer and I developed and published Gartner’s updated definition of Big Data to reflect its value proposition and requirements for “new innovative forms of processing.” (See The Importance of ‘Big Data’: A Definition)

Doug Laney is a research vice president for Gartner Research, where he covers business analytics solutions and projects, information management, and data-governance-related issues. He is considered a pioneer in the field of data warehousing and created the first commercial project methodology for business intelligence/data warehouse projects. Mr. Laney is also originated the discipline of information economics (infonomics). 

Follow Doug on Twitter: @Doug_Laney

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley, former CTO of the Defense Intelligence Agency (DIA), is Founder and CTO of Crucial Point LLC, a technology research and advisory firm providing fact based technology reviews in support of venture capital, private equity and emerging technology firms. He has extensive industry experience in intelligence and security and was awarded an intelligence community meritorious achievement award by AFCEA in 2008, and has also been recognized as an Infoworld Top 25 CTO and as one of the most fascinating communicators in Government IT by GovFresh.

@BigDataExpo Stories
SYS-CON Media announced that Splunk, a provider of the leading software platform for real-time Operational Intelligence, has launched an ad campaign on Big Data Journal. Splunk software and cloud services enable organizations to search, monitor, analyze and visualize machine-generated big data coming from websites, applications, servers, networks, sensors and mobile devices. The ads focus on delivering ROI - how improved uptime delivered $6M in annual ROI, improving customer operations by minin...
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial C...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happe...
The Internet of Things (IoT) promises to evolve the way the world does business; however, understanding how to apply it to your company can be a mystery. Most people struggle with understanding the potential business uses or tend to get caught up in the technology, resulting in solutions that fail to meet even minimum business goals. In his session at @ThingsExpo, Jesse Shiah, CEO / President / Co-Founder of AgilePoint Inc., showed what is needed to leverage the IoT to transform your business. ...
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science f...
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness,...
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, ...
MapR Technologies on Tuesday announced the availability of free Hadoop On-Demand Training for developers, analysts and administrators which represents a $50M in-kind contribution* to the broad Hadoop community. The Hadoop training program is a multi-course curriculum designed to expand worldwide adoption of Hadoop technology. The curriculum provides engaging and interactive video lessons, hands-on exercises, labs and quizzes, enabling professionals to acquire valuable Hadoop skills and knowledge...
“We help people build clusters, in the classical sense of the cluster. We help people put a full stack on top of every single one of those machines. We do the full bare metal install," explained Greg Bruno, Vice President of Engineering and co-founder of StackIQ, in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
In this demo at 15th Cloud Expo, John Meza, Product Engineer at Esri, showed how Esri products hook into Hadoop cluster to allow you to do spatial analysis on the spatial data within your cluster, and he demonstrated rendering from a data center with ArcGIS Pro, a new product that has a brand new rendering engine.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your onlin...
The 4th International DevOps Summit, co-located with16th International Cloud Expo – being held June 9-11, 2015, at the Javits Center in New York City, NY – announces that its Call for Papers is now open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's large...
Software Defined Storage provides many benefits for customers including agility, flexibility, faster adoption of new technology and cost effectiveness. However, for IT organizations it can be challenging and complex to build your Enterprise Grade Storage from software. In his session at Cloud Expo, Paul Turner, CMO at Cloudian, looked at the new Original Design Manufacturer (ODM) market and how it is changing the storage world. Now Software Defined Storage companies can build Enterprise grade ...
Hardware will never be more valuable than on the day it hits your loading dock. Each day new servers are not deployed to production the business is losing money. While Moore's Law is typically cited to explain the exponential density growth of chips, a critical consequence of this is rapid depreciation of servers. The hardware for clustered systems (e.g., Hadoop, OpenStack) tends to be significant capital expenses. In his session at Big Data Expo, Mason Katz, CTO and co-founder of StackIQ, disc...
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the tec...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete...
Amazon, Google and Facebook are household names in part because of their mastery of Big Data. But what about organizations without billions of dollars to spend on Big Data tools - how can they extract value from their data? In his session at 6th Big Data Expo®, Ali Ghodsi, Co-Founder and Head of Engineering at Databricks, discussed how the zero management cost and scalability of the cloud is addressing the challenges and pain points that data engineers face when working with Big Data. He also s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!