Welcome!

Big Data Journal Authors: Yeshim Deniz, Pat Romanski, Carmen Gonzalez, Roger Strukhoff, Elizabeth White

Blog Feed Post

Deja VVVu: Others Claiming Gartner’s Construct for Big Data

By

This article originally appeared on the Gartner Blog Network in January 2012 and is reprinted here with permission from Gartner and its author Doug Laney

In the late 1990s, while a META Group analyst (Note: META is now part of Gartner), it was becoming evident that our clients increasingly were encumbered by their data assets.  While many pundits were talking about, many clients were lamenting, and many vendors were seizing the opportunity of these fast-growing data stores, I also realized that something else was going on. Sea changes in the speed at which data was flowing mainly due to electronic commerce, along with the increasing breadth of data sources, structures and formats due to the post Y2K-ERP application boom were as or more challenging to data management teams than was the increasing quantity of data.

In an attempt to help our clients get a handle on how to recognize, and more importantly, deal with these challenges I began first speaking at industry conferences on this 3-dimensional data challenge of increasing data volume, velocity and variety.  Then in late 2000 I drafted a research note published in February 2001 entitled 3-D Data Management: Controlling Data Volume, Velocity and Variety.

Fast forward to today:  The “3V’s” framework for understanding and dealing with Big Data has now become ubiquitous.  In fact, other research firms, major vendors and consulting firms have even posited the 3Vs (or an unmistakable variant) as their own concept.  Since the original piece is no longer available in Gartner archives but is in increasing demand, I wanted to make it available here for anyone to reference and cite:

Original Research Note PDF: 3-D Data Management: Controlling Data Volume, Velocity and Variety

Date: 6 February 2001     Author: Doug Laney

3-D Data Management: Controlling Data Volume, Velocity and Variety. Current business conditions and mediums are pushing traditional data management principles to their limits, giving rise to novel and more formalized approaches.

META Trend: During 2001/02, leading enterprises will increasingly use a centralized data warehouse to define a common business vocabulary that improves internal and external collaboration. Through 2003/04, data quality and integration woes will be tempered by data profiling technologies (for generating metadata, consolidated schemas, and integration logic) and information logistics agents. By 2005/06, data, document, and knowledge management will coalesce, driven by schema-agnostic indexing strategies and portal maturity.

The effect of the e-commerce surge, a rise in merger & acquisition activity, increased collaboration, and the drive for harnessing information as a competitive catalyst is driving enterprises to higher levels of consciousness about how data is managed at its most basic level.  In 2001-02, historical, integrated databases (e.g. data warehouses, operational data stores, data marts), will be leveraged not only for intended analytical purposes, but increasingly for intra-enterprise consistency and coordination. By 2003-04, these structures (including their associated metadata) will be on par with application portfolios, organization charts and procedure manuals for defining a business to its employees and affiliates.

Data records, data structures, and definitions commonly accepted throughout an enterprise reduce fiefdoms pulling against each other due to differences in the way each perceives where the enterprise has been, is presently, and is headed.  Readily accessible current and historical records of transactions, affiliates (partners, employees, customers, suppliers), business processes (or rules), along with definitional and navigational metadata (see ADS Delta 896, 21st Century Metadata: Mapping the Enterprise Genome, 7 Aug 2000) enable employees to paddle in the same direction.  Conversely, application-specific data stores (e.g. accounts receivable versus order status), geographic-specific data stores (e.g. North American sales vs. International sales), offer conflicting, or insular views of the enterprise, that while important for feeding transactional systems, provide no “single version of the truth,” giving rise to inconsistency in the way enterprise factions function.

While enterprises struggle to consolidate systems and collapse redundant databases to enable greater operational, analytical, and collaborative consistencies, changing economic conditions have made this job more difficult.  E-commerce, in particular, has exploded data management challenges along three dimensions: volumes, velocity and variety.  In 2001/02, IT organizations must compile a variety of approaches to have at their disposal for dealing with each.

Data Volume

E-commerce channels increase the depth and breadth of data available about a transaction (or any point of interaction). The lower cost of e-channels enables and enterprise to offer its goods or services to more individuals or trading partners, and up to 10x the quantity of data about an individual transaction may be collected—thereby increasing the overall volume of data to be managed.  Furthermore, as enterprises come to see information as a tangible asset, they become reluctant to discard it.

Typically, increases in data volume are handled by purchasing additional online storage.  However as data volume increases, the relative value of each data point decreases proportionately—resulting in a poor financial justification for merely incrementing online storage. Viable alternates and supplements to hanging new disk include:

  • Implementing tiered storage systems (see SIS Delta 860, 19 Apr 2000) that cost effectively balance levels of data utility with data availability using a variety of media.
  • Limiting data collected to that which will be leveraged by current or imminent business processes
  • Limiting certain analytic structures to a percentage of statistically valid sample data.
  • Profiling data sources to identify and subsequently eliminate redundancies
  • Monitoring data usage to determine “cold spots” of unused data that can be eliminated or offloaded to tape (e.g. Ambeo, BEZ Systems, Teleran)
  • Outsourcing data management altogether (e.g. EDS, IBM)

Data Velocity

E-commerce has also increased point-of-interaction (POI) speed, and consequently the pace data used to support interactions and generated by interactions. As POI performance is increasingly perceived as a competitive differentiator (e.g. Web site response, inventory availability analysis, transaction execution, order tracking update, product/service delivery, etc.) so too is an organization’s ability to manage data velocity.  Recognizing that data velocity management is much more than a physical bandwidth and protocol issue, enterprises are implementing architectural solutions such as:

  • Operational data stores (ODSs) that periodically extract, integrate and re-organize production data for operational inquiry or tactical analysis
  • Caches that provide instant access to transaction data while buffering back-end systems from additional load and performance degradation. (Unlike ODSs, caches are updated according to adaptive business rules and have schemas that mimic the back-end source.)
  • Point-to-point (P2P) data routing between databases and applications (e.g. D2K, DataMirror) that circumvents high-latency hub-and-spoke models that are more appropriate for strategic analysis
  • Designing architectures that balance data latency with application data requirements and decision cycles, without assuming the entire information supply chain must be near real-time.

Data Variety

Through 2003/04, no greater barrier to effective data management will exist than the variety of incompatible data formats, non-aligned data structures, and inconsistent data semantics.  By this time, interchange and translation mechanisms will be built into most DBMSs. But until then, application portfolio sprawl (particularly when based on a “strategy” of autonomous software implementations due to e-commerce solution immaturity), increased partnerships, and M&A activity intensifies data variety challenges. Attempts to resolve data variety issues must be approached as an ongoing endeavor encompassing the following techniques:

  • Data profiling (e.g. Data Mentors, Metagenix) to discover hidden relationships and resolve inconsistencies across multiple data sources (see ADS898)
  • XML-based data format “universal translators” that import data into standard XML documents for export into another data format (e.g. infoShark, XML Solutions)
  • Enterprise application integration (EAI) predefined adapters (e.g. NEON, Tibco, Mercator) for acquiring and delivering data between known applications via message queues, or EAI development kits for building custom adapters.
  • Data access middleware (e.g. Information Builders’ EDA/SQL, SAS Access, OLE DB, ODBC) for direct connectivity between applications and databases
  • Distributed query management (DQM) software (e.g. Enth, InfoRay, Metagon) that adds a data routing and integration intelligence layer above “dumb” data access middleware
  • Metadata management solutions (i.e. repositories and schema standards) to capture and make available definitional metadata that can help provide contextual consistency to enterprise data
  • Advanced indexing techniques for relating (if not physically integrating) data of various incompatible types (e.g. multimedia, documents, structured data, business rules).

As with any sufficiently fashionable technology, users should expect the data management market place ebb-and-flow to yield solutions that consolidate multiple techniques and solutions that are increasingly application/environment specific. (See Figure 1 – Data Management Solutions) In selecting a technique or technology, enterprises should first perform an information audit assessing the status of their information supply chain to identify and prioritize particular data management issues.

Business Impact: Attention to data management, particularly in a climate of e-commerce and greater need for collaboration, can enable enterprises to achieve greater returns on their information assets.

Bottom Line: In 2001/02, IT organizations must look beyond traditional direct brute force physical approaches to data management.  Through 2003/04, practices for resolving e-commerce accelerated data volume, velocity and variety issues will become more formalized and diverse.  Increasingly, these techniques involve trade-offs and architectural solutions that involve and impact application portfolios and business strategy decisions.

###

Over the past decade, Gartner analysts including Regina Casonato, Anne Lapkin, Mark A. Beyer, Yvonne Genovese and Ted Friedman have continued to expand our research on this topic, identifying and refining other “big data” concepts. In September 2011 they published the tremendous research note Information Management in the 21st Century.  And in 2012, Mark Beyer and I developed and published Gartner’s updated definition of Big Data to reflect its value proposition and requirements for “new innovative forms of processing.” (See The Importance of ‘Big Data’: A Definition)

Doug Laney is a research vice president for Gartner Research, where he covers business analytics solutions and projects, information management, and data-governance-related issues. He is considered a pioneer in the field of data warehousing and created the first commercial project methodology for business intelligence/data warehouse projects. Mr. Laney is also originated the discipline of information economics (infonomics). 

Follow Doug on Twitter: @Doug_Laney

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley, former CTO of the Defense Intelligence Agency (DIA), is Founder and CTO of Crucial Point LLC, a technology research and advisory firm providing fact based technology reviews in support of venture capital, private equity and emerging technology firms. He has extensive industry experience in intelligence and security and was awarded an intelligence community meritorious achievement award by AFCEA in 2008, and has also been recognized as an Infoworld Top 25 CTO and as one of the most fascinating communicators in Government IT by GovFresh.

@BigDataExpo Stories
SYS-CON Events announced today that Verizon has been named "Gold Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Verizon Enterprise Solutions creates global connections that generate growth, drive business innovation and move society forward. With industry-specific solutions and a full range of global wholesale offerings provided over the company's secure mobility, cloud, strategic network...
SimpleECM is the only platform to offer a powerful combination of enterprise content management (ECM) services, capture solutions, and third-party business services providing simplified integrations and workflow development for solution providers. SimpleECM is opening the market to businesses of all sizes by reinventing the delivery of ECM services. Our APIs make the development of ECM services simple with the use of familiar technologies for a frictionless integration directly into web applicat...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic...
Cloudwick, the leading big data DevOps service and solution provider to the Fortune 1000, announced Big Loop, its multi-vendor operations platform. Cloudwick Big Loop creates greater collaboration between Fortune 1000 IT staff, developers and their database management systems as well as big data vendors. This allows customers to comprehensively manage and oversee their entire infrastructure, which leads to more successful production cluster operations, and scale-out. Cloudwick Big Loop supports ...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation...
Headquartered in Santa Monica, California, Bitium was founded by Kriz and Erik Gustavson. The 1,500 cloud-based application using Bitium’s analytics, app management, and single sign-on services include bug trackers, customer service dashboards, Google Apps, and social networks. The firm states website administrators can do multiple tasks online without revealing passwords. Bitium’s advisors include Microsoft’s former CMO and the former senior vice president of strategy, the founder and CEO of Li...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, da...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water,...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
The information technology sphere undergoes what we like to call a paradigm shift, sea change or plain old ‘upheaval’ roughly every five years or so. Don’t ask anybody why this half decade cyclicality exists; it just has to be so. Accept that reinvention happens constantly and that major seismic shifts are tangibly felt by us human beings roughly every 1826.21 days… and we can move on.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, B...
SYS-CON Events announced today that Objectivity, Inc., the leader in real-time, complex Big Data solutions, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Objectivity, Inc. is the Enterprise Database leader of real-time, complex Big Data solutions. Our leading edge technologies – InfiniteGraph®, The Distributed Graph Database™ and Objectivity/DB®, a distributed and scalable object ma...
In their session at DevOps Summit, Stan Klimoff, CTO of Qubell, and Mike Becker, Senior Data Engineer for RingCentral, will share the lessons learned from implementing CI/CD pipeline on AWS for a customer analytics project powered by Cloudera Hadoop, HP Vertica and Tableau. Stan Klimoff is CTO of Qubell, the enterprise DevOps platform. Stan has more than a decade of experience building distributed systems for companies such as eBay, Cisco and Seagate. Qubell is helping enterprises to become mor...
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo, moderated by Ashar Baig, Research ...
Big Data means many things to many people. From November 4-6 at the Santa Clara Convention Center, thousands of people will gather at Big Data Expo to discuss what it means to them, how they are implementing it, and how Big Data plays an integral role in the maturing cloud computing world and emerging Internet of Things. Attend Big Data Expo and make your contribution. Register for Big Data Expo "FREE" with Discount Code "BigDataOCTOBER" by October 31
The evolution of the database is under constant upheaval, discussion, debate and (if you will excuse the expression) 'analysis.' This basic truth is now more relevant, pertinent and pressing than ever due to the prevalence of Big Data (and the need to impose analytics of insight upon it) driven by social, mobile, cloud and of course the Internet of (Every) Things. Today then, as a staple of our IT infrastructure, databases have been around for over 50 years now with first references of the ter...
SYS-CON Events announced today that Cloudian, Inc., the leading provider of hybrid cloud storage solutions, has been named “Bronze Sponsor” of SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Cloudian is a Foster City, Calif.-based software company specializing in cloud storage. Cloudian HyperStore® is an S3-compatible cloud object storage platform that enables service providers and enterprises to bui...