@DXWorldExpo Authors: Zakia Bouachraoui, Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski

News Feed Item

Electric Vehicle Encyclopedia

NEW YORK, Dec. 24, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Electric Vehicle Encyclopedia

IDTechEx has prepared the world's first encyclopedia on the present and future of electric vehicles and their components. Whether you are a beginner or a seasoned practitioner, you can now obtain clarity about all those acronyms and the new terminology. We put this into the context of the three generations of range extenders, the three generations of lithium-ion traction batteries and the three levels of charging infrastructure, for example. As so many vehicle manufacturers now seek to make a wide variety of vehicles, we cover electric vehicles by land, water and air. This is also essential to those researching of making components and subsystems.

There are over 100 tables and illustrations including many block diagrams and cross sections and there is substantial explanatory text. This invaluable reference book is largely based on information from the latest IDTechEx events and reports on the subject and other expert sources, so it gives exceptional insight into what is happening. It is not loaded with nostalgia about the past - such as who invented what - because the focus is on easy access to useful information and the understanding of trends, benefits and challenges now and in future.

Over 200 acronyms and terms are explained. From your AUV to your AELDC, your KERS to your lithium sulfur, Mennekes plug and switched reluctance motor, it is all here. For example, motor Torque and Power are explained in terms of actual values for the various types of EV.

1. A
1.1. AC
1.2. ACIM
1.3. ACI
1.4. AC induction
1.5. AC motor
1.6. Advanced asynchronous motor variant - Chorus Motors
1.7. Advanced synchronous PM motor - Protean Electric
1.8. AELDC
1.9. Aerogel Capacitor
1.10. AGM
1.11. Airship
1.12. Alkaline batteries
1.13. Aluminum Electrolytic Capacitor
1.14. Ampere
1.15. AMV
1.16. APU
1.17. Asymmetric electrochemical double layer capacitor
1.18. Asynchronous motor
1.19. ATEG
1.20. Automotive Thermoelectric Generators
1.21. Autonomous Underwater Vehicle AUV
1.22. AUV
1.23. AUV charging
1.24. Axial flux vs radial flux motors
1.25. Autonomous Underwater Vehicles AUVs
2. B
2.1. Bacitor
2.2. Battery
2.3. Battery capacity
2.4. Battery cells
2.5. Battery Electric Vehicle
2.6. Battery life
2.7. Battery Management System BMS
2.8. Battery State of Charge
2.9. BEV
2.10. Biomimetic
2.11. Bismuth telluride
2.12. BLDC traction motor
2.13. Blended mode
2.14. BMS
2.15. BOL
2.16. Brushed motor
2.17. Brushless DC
2.18. Brushless motor
2.19. BSOC
3. C
3.1. Cabattery
3.2. Cadmium telluride
3.3. Capacitance
3.4. Capacitor
3.5. Capacitor electrolytic
3.6. Capacitor electrostatic
3.7. Capacitor tantalum
3.8. CARB
3.9. CdTe
3.10. Ceramic Capacitor
3.11. CHAdeMO
3.12. Charge depleting mode
3.13. Charger
3.14. Charge sustaining mode
3.15. Charging electric vehicles
3.16. Charging station
3.17. CIGS
3.18. Clandestine Extended Range Vehicle CERV
3.19. COM-BAT
3.20. Commutator
3.21. Controller
3.22. Converter
3.23. Coulomb
3.24. CPU
4. D
4.1. DC
4.2. DDC
4.3. Deep hybridisation
4.4. de-ICE
4.5. Dielectric
4.6. DMFC
4.7. DOD
4.8. DSSC
5. E
5.1. Earthed/Grounded
5.2. e-bike
5.3. ECM
5.4. EDLC
5.5. EH
5.6. Electric aircraft
5.7. Electric bicycle
5.8. Electric Corner Modules ECM
5.9. Electric helicopter
5.10. Electric motor
5.11. Electric motor scooters
5.12. Electric nose wheels
5.13. Electric traction motor
5.14. Electric Vehicle EV
5.15. Electric vehicle value chain
5.16. Electrochemical Double Layer Capacitor
5.17. Energy harvesting
5.18. Energy scavenging
5.19. EOL
5.20. eRoute
6. F
6.1. Farad
6.2. FCV or FCEV
6.3. FCHV
6.4. FCUV
6.5. FEV
6.6. Fixed Capacitor
6.7. Flying motorcycle
6.8. Flying submarines
6.9. Flywheel Energy Storage
6.10. Free piston engine
6.11. Fuel cell
7. G
7.1. GC
7.2. GHG
7.3. Glider AUV
7.4. Ground Support Equipment
7.5. GSE
8. H
8.1. HEV
8.2. High voltage systems
8.3. HPCU
8.4. Hybrid aircraft
8.5. Hybrid bus
8.6. Hybrid electric vehicle
8.7. Hub motor
8.8. Humming bird
8.9. Hybrid
9. I
9.1. ICE
9.2. IGBT
9.3. Integrated Sensor Is Structure smart airship
9.4. Internal Combustion Engine
9.5. Induction motor
9.6. Inductive coupling
9.7. Intercalation
9.8. Inverter
9.9. In-wheel motor
9.10. In-wheel units
9.11. ISIS electric airship
10. J
10.1. Jaguar supercar
11. K
11.1. KERS
11.2. Kinetic Energy recovery System
11.3. kW
12. L
12.1. Laminar battery
12.2. Lane-splitting
12.3. Large Unmanned Aerial Vehicles LUAVs
12.4. Lead acid battery - Absorbed Glass Mat
12.5. Lead acid battery - Flooded or Wet Cells
12.6. Lead acid battery - Gel Cells
12.7. LCO
12.8. LEVA
12.9. Level One
12.10. Level Two
12.11. Level Three
12.12. LDV
12.13. LFP
12.14. LIC
12.15. Light Electric Vehicle Association
12.16. Light Electric Vehicle LEV
12.17. Li-ion
12.18. LiPo
12.19. Lithium-ion batteries
12.20. Lithium Cobalt Oxide
12.21. Lithium Iron Phosphate
12.22. Lithium manganese
12.23. Lithium polymer
12.24. Lithium rechargeable battery
12.25. Lithium sulfur
12.26. Lithium titanate
12.27. Lithium traction batteries - Second generation
12.28. Lithium traction batteries - Third generation
12.29. Low Speed Vehicles LSV
13. M
13.1. MATV
13.2. MCFC
13.3. MEMS
13.4. Mennekes plug
13.5. Micro hybrid / Microhybrid
13.6. Microturbine
13.7. Mine Resistant Ambush Protected - All Terrain Vehicle
13.8. Mixed mode
13.9. Mobility aids for the disabled/ mobility vehicles
13.10. Mobility scooter
13.11. Monoblock engines
13.12. Motor controller
13.13. Multi-fuel engines
13.14. Multi-mode energy harvesting
14. N
14.1. Nano Air Vehicle
14.2. NAV
14.3. Neighborhood aircraft
14.4. Neighborhood Electric Vehicle NEV
14.5. Nickel-Metal Hydride battery
14.6. NiMH Battery
14.7. Noise Vibration Harshness
14.8. NVH
15. O
15.1. OCV
15.2. On Line Electric vehicle OLEV
16. P
16.1. PAFC
16.2. PAS
16.3. Pb-Acid
16.4. PCM
16.5. Pedelec
16.6. PEFC
16.7. PEM
16.8. PEMFC
16.9. Personal Electric Vehicle PEV
16.10. PEV
16.11. PHEV
16.12. Photovoltaic
16.13. Piezoelectric
16.14. Plug-in
16.15. PM
16.16. PMAC traction motor
16.17. Pouch
16.18. Power
16.19. Power beaming
16.20. Power chairs
16.21. Power on demand bike
16.22. Power restricted vehicles
16.23. Printed electronics
16.24. Prismatic
16.25. Proton Electron Fuel Cell
16.26. Proton exchange membrane
16.27. Pulse Width Modulation
16.28. Pure Electric Vehicle PEV
16.29. PV
16.30. PWM
16.31. PZEV
16.32. PZT
17. R
17.1. Range Extended Electric Vehicle REEV
17.2. Range extender
17.3. Rare earths
17.4. RBS
17.5. RE
17.6. REEV
17.7. Regen
17.8. Regenerative Braking System
17.9. Regenerative soaring
17.10. Resonant power transfer
17.11. Robot insects and tiny birds
18. S
18.1. SAE levels of charging
18.2. Scooter
18.3. SCR
18.4. Sea scooters
18.5. SEI
18.6. Separator
18.7. SepEx
18.8. Series motor
18.9. SFC
18.10. SIM Drive
18.11. SLA
18.12. SLI
18.13. SM
18.14. Small Unmanned Aerial Vehicles SUAVs
18.15. Smart grid
18.16. Smart skin
18.17. Society of Automotive Engineers SAE
18.18. SOFC
18.19. Solar Impulse
18.20. Solar road vehicles
18.21. Solar train
18.22. Specific energy
18.23. Split path
18.24. SRM
18.25. SUAV
18.26. Supercabatteries
18.27. SuperCap
18.28. Supercapacitor
18.29. Super grid
18.30. SVR
18.31. Swimmer
18.32. Switched reluctance motor
18.33. Synchronous machines SM
18.34. Synchronous motor
19. T
19.1. Tantalum Capacitor
19.2. TDI
19.3. Torque
19.4. TPM
19.5. TPMS
19.6. Traction battery
20. U
20.1. ULEV
20.2. Ultra Broadband Capacitor UBC
20.3. Ultracapacitors
21. V
21.1. Vehicle Management System VMS
21.2. VEM
21.3. VMS
21.4. Volt
21.5. VRLA
22. W
22.1. Wankel engine
22.2. Wh
22.3. Wireless Power Transmission WPT
23. Y
23.1. Yazaki connector for charging
24. Z
24.1. ZEV

To order this report:
Clean_Vehicle Industry:
Electric Vehicle Encyclopedia

Contact Nicolas: [email protected]
US: (805)-652-2626
Intl: +1 805-652-2626

SOURCE Reportlinker

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

DXWorldEXPO Digital Transformation Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
As Cybric's Chief Technology Officer, Mike D. Kail is responsible for the strategic vision and technical direction of the platform. Prior to founding Cybric, Mike was Yahoo's CIO and SVP of Infrastructure, where he led the IT and Data Center functions for the company. He has more than 24 years of IT Operations experience with a focus on highly-scalable architectures.
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Enterprises are striving to become digital businesses for differentiated innovation and customer-centricity. Traditionally, they focused on digitizing processes and paper workflow. To be a disruptor and compete against new players, they need to gain insight into business data and innovate at scale. Cloud and cognitive technologies can help them leverage hidden data in SAP/ERP systems to fuel their businesses to accelerate digital transformation success.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...